
Working draft available at https://mlbenchmarks.org

— 12 —
The problem of aggregation

Multi-task benchmarks promise a holistic evaluation of complex
models. An analogy with voting systems reveals limitations in
multi-task benchmarks. Greater diversity comes at the cost of
greater sensitivity to artifacts.

12 The problem of aggregation 1
12.1 Multi-task benchmarks . 3
12.2 Problems of aggregation and voting systems 8
12.3 Ranked voting systems . 10

Majority vote and Condorcet’s paradox 11
Positional voting . 12
Arrow’s theorem . 13

12.4 Rated voting . 14
Strategic behavior . 15

12.5 Empirical trade-offs in multi-task benchmarks 17
Measuring sensitivity to irrelevant changes in benchmarks . . 17
Trade-offs between sensitivity and diversity 19

12.6 Latent factors in benchmark performance 20
12.7 Notes . 22

Source: The Emerging Science of Machine Learning Benchmarks. M. Hardt,
2025. URL: https://mlbenchmarks.org. Compiled on 2025-10-17.

1

https://mlbenchmarks.org
https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Benchmarking is at risk of becoming a victim of its own success. There
are hundreds of recent benchmarks and the number is rapidly growing. In
the previous chapter we discussed how these benchmarks all give different
rankings, at least under direct evaluation. This puts us in a tight spot: Which
ranking should we actually look at?

The first option is to punt the problem to the user. Put all the evaluations
out there in one big benchmark bazaar and let everyone pick for themselves.
The more, the merrier. Although convenient, the idea of a benchmark
bazaar runs into two sticky problems. First, it defeats the point of the iron
rule. What should model builders and researchers compete over if there are
hundreds of incompatible rankings? Second, by what logic should anyone
select a model? The benchmark consumer can try to guess what benchmark
is most relevant to them, or try out all the different models for themselves
somehow. But that is exactly the kind of guesswork benchmarking was
supposed to prevent.

Organizing competition and supporting model selection are two vital
functions of a healthy benchmarking ecosystem. Both break down when
there are too many different benchmarks. It’s perhaps for this reason that
the machine learning community tends to defy benchmark plurality. At
any point in time, the community’s attention gravitates toward a few highly
influential benchmarks. People prefer to have one number. AI researcher
Jason Wei, known for building LLMs at Google, OpenAI, and Meta, sums it
up:

It’s critical to have a single-number metric—I can’t think of any
great evals that don’t have a single-number metric.1

Optimal decisions compare two alternatives according to a single criterion.
We learned this in Chapter 2. A benchmark bazaar simply presents too much
information to be useful. It provides practitioners with no guidance about
how to select models. It exposes too many competing signals for model
builders. And it fails to lay out the rules of a game that the community can
compete over.

So, what should we do instead? The only alternative to a bazaar is to
somehow reduce the information into a more manageable product. At the
extreme end, we can try to aggregate all evaluations into a single represen-
tative ranking. That is what multi-task benchmarks try to accomplish. The
goal is simple, but the problem isn’t. This chapter is about the challenges
that arise when trying to aggregate evaluations.

2

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

12.1 Multi-task benchmarks

Before we make the notion of a multi-task benchmark more precise, let’s take
a look at some of the most well-known multi-task benchmarks today. Our
focus is on how these different benchmarks attempt to solve the aggregation
problem.

BIG-Bench. The Beyond the Imitation Game Benchmark (BIG-Bench) came
out of a massive collaboration of hundreds of contributors, collecting 214 lan-
guage modeling tasks. The stated goal of the benchmark was “measuring and
extrapolating the capabilities of language models”.2 In doing so, BIG-Bench
wasn’t the first benchmark that aimed to go beyond the Turing test, originally
called Imitation Game. Remember the Winograd Schema Challenges from
Chapter 10. But BIG-Bench certainly notched up the benchmarking game in
terms task diversity.

The 214 tasks deliberately try to cover all sorts of different challenges,
ranging from typical NLP problems to more creative new entries. The task
emoji_movie, for example, asks to map emoji sequences to movie titles. A
rat and two chefs stands for Ratatouille. A girl and three fish is Finding
Nemo. A very different kind of task, self_awareness, aims to measure “to
what extent the language model is self-aware.”3 Yet another task, called
mnist_ascii . . . well, you guessed it:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@##*@#++#@@@@ @@@@@@@@@@@@@@@@@@@@*+@@@@@@
@@@@@@@@=−:::.....*#**#@@@@@ @@@@@@@@@@@%+====−+−.=@@@@@@
@@@@@@@@%*%:.=@@@#@@@@@@@@@@ @@@@@@@@@@+..*#@@*..=@@@@@@@
@@@@@@@@@@@#::%@@@@@@@@@@@@@ @@@@@@@@@@%−.−%+:.−%@@@@@@@@
@@@@@@@@@@@@@*−::+#@@@@@@@@@ @@@@@@@@@@@+....=#@@@@@@@@@@
@@@@@@@@@@@@@@@@%..:%@@@@@@@ @@@@@@@@@#:..:.−@@@@@@@@@@@@
@@@@@@@@@@@@@#+−:..−@@@@@@@@ @@@@@@@%=.=#@=.=@@@@@@@@@@@@
@@@@@@@##*=:..−=*#@@@@@@@@@@ @@@@@@@+.−#+:−+%@@@@@@@@@@@@
@@@@*:...−−+#@@@@@@@@@@@@@@@ @@@@@@@#−.:−#@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@

The digits are 5 and 8. The task remains tricky even for recent models.

Many BIG-Bench tasks are eclectic and perhaps somewhat questionable.
The community largely avoided the full task plurality of BIG-Bench from
the get-go. Various much smaller subsets of BIG-Bench quickly became

3

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

more widely used. Part of the original release, BIG-Bench Lite (BBL) is a
subset of 24 tasks, meant to give “a canonical measure of model performance,
while being far cheaper to evaluate.”4 BIG-Bench Hard (BBH) groups 23
of the more challenging tasks from BIG-Bench into a different multi-task
benchmark.5

It’s not just the cost of evaluation. There’s a deeper problem with task
plurality. Different tasks come with different evaluation metrics. Quantities
with different units are incommensurate with each other: You can’t mean-
ingfully average inches and kilograms, even though both are real numbers.
Similarly, there’s no coherent meaning to an average of a BLEU-score and a
classification accuracy. The quantities might still vary in tandem. Stronger
people are often both taller in inches and heaver in kilograms. So, perhaps
my “inchgram” number correlates well with strength. Similarly, BLUE-scores
and accuracy numbers typically both grow with model scale. Averages of
incommensurate quantities might still correlate in some intuitive ways with
other quantities, but there’s no clear meaning to that average.

The incommensurability problem is a bit more subtle still. Two accuracy
numbers can also be incommensurate. In binary classification, random
guessing gets you 50% accuracy. With many classes random guessing scores
close to 0% accuracy. Add varying levels of noise to your problem, and a
perfect classifier can come in at any accuracy level, 20%, 50%, or 100%. As a
result, it can be a lot easier to make a 10% improvement in some tasks than
others, just like it’s easier to gain weight than to grow taller.

Multi-task benchmarks, like BIG-Bench, typically take a pragmatic ap-
proach to the aggregation problem: Normalize the scores to be in a common
interval, say, [0,1], and average them out. BIG-Bench uses a dynamic range
normalization:

normalized score = 100× raw score− low score
high score− low score

,

based on suitable task-specific choices of low score and a high score.

OpenLLM leaderboard. Launched by Hugging Face in 2023, the OpenLLM
leaderboard attracted participation from 300,000 users and saw more than
two million unique visitors in its first ten months.6 The leaderboard eval-
uated open weight models through the Eleuther AI evaluation harness, a
major open source effort.7 An updated leaderboard (v2) launched in June
2024, featuring six benchmarks:

4

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

• MMLU-Pro, a refined version of MMLU.8

• GPQA, difficult “Google-Proof” multiple choice questions about biol-
ogy, physics, and chemistry.9

• MuSR, multistep reasoning featuring algorithmically generated reason-
ing challenges.10

• MATH, a dataset of challenging math problems in a specific format.11

• IFEval, an instruction following benchmark.12

• BIG-Bench Hard, as discussed above.

In addition to the new benchmarks, v2 changed the scoring. The original
leaderboard summed up accuracy numbers across benchmarks. The new
leaderboard normalized them to be between the performance of a random
baseline and the largest possible score. This effectively decreases the weight
of benchmarks where random guessing scores relatively high, e.g., multiple
choice questions with few alternatives. The introduction of the new leader-
board caused significant changes to the ranking. Qwen1.5-32B-Chat, for
example, moved from rank 57 into the top 10.6 Interestingly, the top model
at the time, Qwen2-72B-Instruct, ranked first in both rankings.

Despite its popularity, Hugging Face shut down the leaderboard in March
2025. A brief announcement cited concerns that benchmarks had evolved
and that the leaderboard might become misleading:

[W]e feel it could encourage people to hill climb irrelevant direc-
tions in the field.13

Model merging was one of the common tricks to get ahead on the leader-
board. If on different tasks different models scored highest, you’d always get
an “easy” improvement by combining the two models. Mixture of Experts
(MoE) models route different prompts to different models, hoping to select
the best model for the task. In response, Hugging Face created a different
category for model merges. Merging isn’t cheating though. Rather it points
at a fundamental problem with the idea of competing over multiple tasks at
the same time.

Holistic Evaluation of Language Models. Holistic Evaluation of Language
Models (HELM) is a major effort to evaluate foundation models across many
different tasks, so-called scenarios.14 HELM provides several different leader-
boards.

The first version of HELM took an innovative approach to aggregation.
Instead of averaging out numbers, it computed an overall ranking from win
rates. The win rate of a model corresponds to the fraction of models that

5

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

have a lower or equal score on the task. In other words, it’s the quantile
of the model’s score in the task ranking. The mean win rate averages this
number across all tasks.

What’s appealing about mean win rate is that it can be computed from
task rankings alone. We don’t need to know what metric each task uses, how
to normalize it, or how to compare it to other metrics. The whole issue of
incommensurability disappears. We simply average out ranking quantiles.

To give a concrete example, consider two models A and B and three tasks.
Model B scores higher on two of the tasks, resulting in the mean win rate 1

3(1+
1 + 1/2) = 5/6 ≈ 0.83. Model A has a mean win rate of 1

3(1/2 + 1/2 + 1) = 2/3 ≈
0.67. Model B is better according to mean win rate.

Now add a third, weaker model to the picture. Model C is a smaller variant
of model A and therefore scores lower than model A on all tasks. But in
that one task where A is better than B, C is also better than B. We get the
following win rates:

Win rates Task 1 Task 2 Task 3 Mean

Model A 2/3 2/3 1 7/9
Model B 1 1 1/3 7/9
Model C 1/3 1/3 2/3 4/9

The mean win rate of A is now 1
3(2/3 + 2/3 + 1) = 7/9 ≈ 0.78, equal to the

mean win rate of B, that is, 1
3(1 + 1 + 1/3) = 7/9. Model C is far off with mean

win rate 4/9 ≈ 0.44. What happened here is that introducing a weak model
at the bottom of the ranking changed our comparison of the top contenders.
Whereas A looked worse than B at first, the two models tie for first place
after adding a weaker competitor to the mix.

Mean win rate depends on the set of models under comparison. Rankings
can therefore change if we add or remove models, even if these models are
in a sense irrelevant. Unfortunately, this isn’t just a quirk of the win rate
metric that we could avoid with some clever tweak. As we’ll see later, this is
the inevitable property of any aggregation method that works from ranking
information alone. In fact, this sensitivity to irrelevant changes was the
reason why later versions of HELM moved away from win rate to mean score
rankings. The documentation of the 2025 HELM Capabilities leaderboard
explains:

Top-level Aggregation. The models are ranked based on the mean

6

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

score, which aggregates metrics across scenarios with the [Wild-
Bench] score (1-10) rescaled to 0-1. Note that this is different
from our previous approach in HELM Classic and HELM Lite,
which is to use the mean win rate as the top-level aggregate score.
This change is motivated by the fact that the mean win rate is 1)
dependent on the set of models being compared, and 2) sensitive
to small variations in scenario scores that invert ranks.15

As of October 2, 2025 (release v1.14.0), the top of the HELM Capabilities
leaderboard looked like this:

Model Mean MMLU-Pro GPQA IFEval WB Omni-MATH

GPT-5 mini 0.819 0.835 0.756 0.927 0.855 0.722
o4-mini 0.812 0.820 0.735 0.929 0.854 0.720
o3 0.811 0.859 0.753 0.869 0.861 0.714
GPT-5 0.807 0.863 0.791 0.875 0.857 0.647

Curiously, the leaderboard has GPT-5 mini slightly ahead of GPT-5, even
though “mini” was meant to be a smaller and faster version of GPT-5, not a
more capable one. Before GPT-5, OpenAI advertised o3 as its most capable
model and o4-mini as a smaller, faster alternative. Yet, o4-mini scores about
the same as o3. In fact, all four models achieve just about the same mean
score. Are they all equally capable or does the mean score fail to measure
differences in true capabilities?

Chatbot Arena. Although not a typical multi-task benchmark, Chatbot
Arena also faces a massive ranking aggregation problem. We can think of
each Arena user as providing a partial model ranking. The platform turns
a huge number of such rankings into one central ranking, thus solving an
aggregation problem.

In this context, the Elo method we saw in the last chapter is fundamentally
a ranking aggregation method. Elo turns many partial rankings into a single
ranking via a one-dimensional Bradley-Terry model.

To recall, each model A has a rating RA, a scalar variable capturing the
model’s latent skill. When model A and model B face off, Elo computes a
probability p that model A wins over model B based on the rating differ-
ence RA −RB. Specifically, Elo assumes that the log odds of model A winning
a comparison against model B are proportional to the skill difference:

logit(p) ∝ RA −RB

7

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Elo updates ratings after each matchup so as to improve the fit of the model
on the observed comparison. The overall ranking sorts models in descending
order of their ratings. Following the mantra of a single number, Chatbot
Arena commits to a single ranking in each of a few broad domains, such as
text, vision, or multimodal models.

12.2 Problems of aggregation and voting systems

At the outset, most multi-task benchmarks are just a collection of conven-
tional benchmarks, each corresponding to one task. Each task provides a
ranking in the usual way. There’s a set of test cases and a metric; we rank
the models according to their performance on the test cases in terms of the
metric choice. You could think of multi-task benchmarks as simple lookup
tables for single task performances. From this perspective, there’s nothing
fundamentally new about multi-task benchmarks.

What makes a multi-task more interesting is the idea of a single repre-
sentative ranking that tries to capture overall performance across all tasks.
Abstractly, the multi-task ranking aggregation problem is the following:

• Input
– A setM of models A,B,C,D, . . .
– For each task i, a partial ordering A ≻i B indicating that task i

ranks model A higher than model B
• Output

– A complete ordering A ≻ B over all models.

This aggregation problem applies to the original HELM benchmark, which
computes an aggregate ranking from individual task rankings via the mean
win rate. It also applies to Chatbot Arena if we think of each visitor as one
task giving us one comparison. But the problem doesn’t apply to benchmarks
that consider numerical scores, like BIG-Bench or the OpenLLM leaderboard.
Therefore, we define the multi-task rating aggregation problem analogously:

• Input
– A setM of models A,B,C,D, . . .
– For each task i and model A a rating ri(A)

• Output
– A complete ordering A ≻ B over all models.

Rating aggregation allows each task to specify a number for each model.
The aggregation rule takes these numbers into account.

8

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Voting. Both aggregation problems have an equivalent interpretation in
terms of voting. Think of tasks as voters and models as candidates. A
voting system has to aggregate the votes of each voter into an outcome, such
as a single winner a full ranking of all candidates. Therefore, multi-task
benchmarks are analogous to voting systems where tasks are voters and
models are candidates.

In the context of voting, multi-task ranking aggregation is called ranked
voting, while rated voting corresponds to multi-task rating aggregation. Vot-
ing has a rich history in political theory, economics, and the social sciences
more broadly. In particular, voting is a central subject of the broader field of
social choice theory.

Social choice theory studies how groups of individuals come to agree on
a social outcome. The outcome could be the winner of an election, how to
divide up a shared resource, or the choice of a policy in a city government.
The focus of social choice theory is on collective decision-making processes.

The connection to social choice theory has two useful applications. First, it
illuminates the kind of problems we’re going to encounter with multi-task
benchmarks. Voting has a rich theory that exposes fundamental challenges
with aggregation. Second, social choice theory has developed numerous
clever voting rules, many of which have never been implemented in bench-
marking. It’s entirely possible that future multi-task benchmarks will imple-
ment clever ideas from the theory of voting.

To summarize the connection with voting:

• Tasks are voters.
• Models are candidates.
• Multi-task benchmarks are voting systems.

Ranked voting systems are also called ordinal voting systems. Ordinal
systems only take the relative preference of voters into account. All that
matters is whether a voter prefers candidate A to candidate B or the other
way around. Ranted voting, on the other hand, corresponds to cardinal voting
systems. Cardinal systems take the strengths of votes into account. Votes
numerically represent the strength of preference for a candidate.

As we saw, both ordinal and cardinal voting systems make sense for bench-
marking and have, in fact, been implemented in major multi-task bench-
marks. We’ll go over ranked voting and rated voting in turn, covering some
of the insights from the social choice literature relevant to benchmarking.
Perhaps the single biggest lesson from social choice theory is that there’s no

9

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

voting system that checks all the boxes. All voting systems fail to have some
desirable property in some cases at least. This sounds disappointing, but
social choice theory has also developed many ways to cope.

12.3 Ranked voting systems

Ordinal voting rules are common in political elections and have long been
studied in social choice theory. Recall our formal setup:

• There are candidates or alternatives A,B,C,D,
• Voter i has preferences A ≻i B, meaning that the voter prefers candidate
A over candidate B.

In addition, we make two assumptions about every voter i:

• Completeness: For any two alternatives A,B, either A ≻i B or B ≻i A.
• Transitivity: A ≻i B and B ≻i C implies A ≻i C.

These assumptions are also natural in the machine learning context, be-
cause they are equivalent to saying that we have a ranking of all models for
each task.

Fact 1. A complete and transitive preference relation is equivalent to a ranking.

Proof. It’s not hard to see that any ranking gives us a complete and transitive
preference relation. But let’s see how to go from a complete and transitive
preference relation to a ranking. The idea is to repeatedly “peel off” the top
candidate until we have a complete ranking. What’s not obvious is that a
“top” candidate is always well-defined.

Given a preference relation, consider the candidate A that beats the most
other candidates in pairwise comparisons. Such a candidate must always
exist. It turns out that A must, in fact, beat all other candidates. Arguing
by contradiction, suppose there were a candidate B that beats A. Then, by
transitivity, B beats everything A beats. Then, by completeness, these are all
pairwise comparisons. Hence, B beats more alternatives than A in pairwise
comparisons.

The previous observation is the key argument. Using this claim, we can
construct a ranking by repeatedly “peeling off” the top candidate that beats
the most other alternatives until we have a complete ranking.

10

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Majority vote and Condorcet’s paradox

There’s a natural voting rule for two alternatives A,B. It’s the majority vote.
Take the alternative that is preferred by most voters. We discussed some of
the nice properties of majority voting in Chapter 9, where we talked about
label aggregation.

Can we generalize the majority vote to more than two alternatives? One
natural generalization of a majority winner to more than two alternatives is
the notion of a Condorcet winner.

Definition 1. A Condorcet winner is a candidate that would get more than half
the votes in a one-on-one race against any opponent.

Attempting to find a Condorcet winner, we can define the aggregate pref-
erence relation A ≻ B, if A ≻i B for a majority of voters. This relation is
complete, assuming all voters have complete preferences. If the aggregate
preference relation is also transitive, we have a ranking and the Condorcet
winner is at the top of this ranking. Unfortunately, the aggregate relation
need not be transitive. It can, in fact, have cycles. This stumbling block is
known as Condorcet’s paradox.

Condorcet’s paradox. A minimal example of Condorcet’s paradox has three
candidates A,B,C and three voters with the following preferences:

• Voter 1: A ≻1 B ≻1 C
• Voter 2: B ≻2 C ≻2 A
• Voter 3: C ≻3 A ≻3 B
• Aggregate preference relation:

– A ≻ B (voter 1, 3)
– B ≻ C (voter 1, 2)
– C ≻ A (voter 2, 3)

Clearly, the aggregate preference relation is cyclic! As a result, there is no
Condorcet winner.

Fact 2. Complete and transitive voter preferences may not have a Condorcet
winner.

Condorcet’s paradox also says something about tournaments. In a tourna-
ment, we repeatedly face off pairs of candidates until a single winner is left.
Condorcet’s paradox implies that the winner depends on the order of play.
This incentivizes candidates to be strategic about the order in which they’re
being compared.

11

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Condorcet method. Earlier we defined majority relation so that A ≻ B if
a majority of voters prefer A over B. If this relation is transitive, we have
a Condorcet winner: Compute the ranking and pick the top. But if it isn’t
transitive, we’re stranded. In particular, this approach doesn’t define a
voting system.

A Condorcet method is any valid voting system that always finds a Con-
dorcet winner, if it exists. A simple Condorcet method is Ranked Pairs
voting. Ranked Pairs find an acyclic subset of the majority relation, while
prioritizing stronger victories:

1. Compute the winner for each pairwise matchup between two candi-
dates.

2. Sort those victories by margin of victory from strongest to weakest.
3. Create a directed acyclic graph where each node is a candidate. For

each matchup in sorted order, add an edge from winner to loser, if it
doesn’t create a cycle. Skip any matchup that would create a cycle.

4. The source of the graph is the Condorcet winner.

In fact, the directed acyclic graph gives a complete and transitive relation
that we can convert into a full ranking of candidates.

Positional voting

Positional voting is a ranked voting system where candidates get points for
their position in each of the voters’ rankings. There are many different ways
to assign points based on ranks. One well-known example is the Borda count.

According to the Borda count, the top candidate in a ranking of k candi-
dates gets k −1 points, the second gets k −2, and so on. The last candidate in
the ranking gets 0 points. We add up all the points for each candidate and
sort candidates by their overall point score in descending order.

Up to scaling, Borda count is equivalent to mean win rate. The win rate
assigned 1 to the top candidate, 1 − 1/k to the second, 1 − 2/k to the third
and so on. The way we defined it we can go from win rate to Borda count by
multiplying the win rate by k and subtracting 1.

Compared with Condorcet’s method, positional voting directly produce
a ranking, i.e., a complete, transitive aggregate preference. There’s always
a winner and we don’t need to worry about cycles. The problem with
positional voting is that the ranking of the top contenders depends on how
they perform against far off candidates, so-called irrelevant alternatives.

12

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

We already saw one such example earlier on in the context of HELM.
Here’s another example in the language of voting to illustrate the same point.
Suppose we have two contenders A,B, where 90 voters prefer A and only 10
voters prefer B. The Borda count of A is 90 and the Borda count of B is 10.
Candidate A is the clear winner. But now suppose we introduce another 98
candidates so that we have 100 candidates and 100 voters. Let’s say 90 voters
still have A first and B second. But those 10 voters that have B first really
dislike A and rank it last among the 100 alternatives. We can compute the
counts:

• Borda count for A equals 90× 99 = 8910
• Borda count for B equals 90× 98 + 10× 99 = 9810
• The Borda count for any other candidate is at most 10× 98 = 980.

The example shows how weak candidates with low Borda counts can flip
the ranking of the top contenders.

Arrow’s theorem

Given the issues with Condorcet’s method and positional voting, you might
ask if there any ranked voting systems for many candidates that have all
the desirable properties? Arrow’s impossibility result from 1950 suggests a
negative answer to this question. We must always give up on something that
we’d like to have. To make this point, Arrow puts forward two criteria for a
good voting system:

• Unanimity: If every voter prefers A over B, then A should rank higher
than B.

• Independence of irrelevant alternatives (IIA): The ordering of A
relative to B should only depend on how each voter compares A to B.

In addition, we also assume that the voting system should not restrict vot-
ers: Each voter may rank candidates any way they want. For two alternatives,
majority voting satisfies both unanimity and IIA. However, Arrow’s theorem
says that there is no such voting rule for three or more alternatives.16,17

Theorem 1. If there are at least three alternatives, then any voting system that
satisfies both unanimity and IIA must be a dictatorship by one voter.

A dictatorship by one voter corresponds to the case where the aggregate
ranking is identical to the ranking of one single voter, the “dictator”. Arrow’s
theorem has an intuitive interpretation in terms of benchmarking. A multi-
task benchmark that checks all the boxes. . . isn’t: it must be a single-task
benchmark in disguise. If we want something that’s truly not a single-task

13

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

benchmark, then we’ll have to live with at least one of the two properties,
unanimity or IIA, being violated.

Having said that, Arrow’s theorem is a theoretical result that applies to
ranked voting, but not to rated voting. This opens up the possibility that
perhaps rated voting can avoid all issues. Moreover, even for ordinal voting
systems, perhaps Arrow’s theorem doesn’t actually occur in practice. We’ll
discuss each of these possibilities in turn.

12.4 Rated voting

In rated voting, voters express the strength of their votes, not just the order-
ing of different candidates. Score voting is one of the most common rated
voting mechanisms. In score voting, voters express their preference for each
candidate on some numerical scale. The candidate with the highest average
score wins. Score voting is also the most common variant of rated voting
in the context of benchmarking. Social choice theory has considered many
other rated voting systems and hybrids between ranked and rated voting.
Here, we’ll focus on score voting. Our first observation is that like any other
voting method, score voting is no panacea.

Fact 3. Score voting may not elect a Condorcet winner.

A simple example demonstrates the fact.

Voter 1 Voter 2 Voter 3 Mean

A 0.8 0.8 0.2 0.6
B 0.7 0.6 0.8 0.7
C 0.4 0.1 0.4 0.3

Model B wins the score vote, but model A is the Condorcet winner: It
wins on 2 out of 3 tasks against any other model. Mapping this example to
benchmarking, are we happier with model A or model B?

It depends. Model A largely loses the score vote, because it scores low in
Task 3 (Voter 3). Depending on the benchmark, it’s possible that Task 3 is
a quirky task, say, mnist_ascii, where model A just fails. The company
behind model B may have recognized the importance of Task 3 for the overall
ranking and specifically prepared their model for this task (cf. Chapter 11).
This might explain the unusually high score of model B on Task 3. In this
case, we’re better off with the Condorcet winner. In an alternative scenario,

14

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

however, Task 3 might point at an important shortcoming of model A. In
this case, we’re better off trusting the score vote.

Strategic behavior

Rated voting avoids Arrow’s theorem, but it nevertheless runs into a similar
predicament. Any ranked voting system with more than three alternatives
is either dictatorial or it incentivizes voters to act strategically: To get the
outcome they desire, voters will generally want to report preferences as
a function of what they believe other voters do. In particular, voters will
misrepresent their true preferences. This predicament is a consequence of
Gibbard’s 1973 theorem that has several variants and holds in quite some
generality.18,19

There are many ways to vote strategically. You might pick the “lesser evil”
instead of your preferred candidate, because the lesser evil has the better
chance to win. You might state overly low preferences for your second choice
to make it more likely that your preferred choice wins.

What does strategic behavior mean for benchmarking? The number of
tasks in a benchmark is relatively small compared to the number of voters
in many elections. Generally, strategic behavior is more potent when the
number of voters is small. On the other hand, voters in benchmarking are
tasks. It’s unlikely—though not impossible to imagine—that benchmark
creators strategically design a task so as to benefit a specific model. What’s
more likely, however, is that model builders strategically invest effort to-
wards improvements in some tasks versus others. Strategic effort allocation
has a similar effect on outcomes as strategic voting.

Strategic effort allocation in multi-task benchmarks. We can learn a lot
from a simple setting of strategic effort allocation. In this simple setup, a
model builder invests effort xi ≥ 0 into preparing for the model for task i.
We assume that performance improves with effort as a non-negative func-
tion fi(xi) ≥ 0 that is differentiable and strictly concave. That is, there are
diminishing returns to effort, as is usually the case. The model builder will
spend one unit of effort across all k tasks so that

∑k
i=1xi = 1.

The goal of the model builder is to maximize the total score improvement.
Assuming the benchmark averages out scores across tasks, the model builder
therefore wants to maximize the sum of score improvements across all tasks.

15

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

0.0 0.2 0.4 0.6 0.8 1.0
xi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
ar

gi
na

lr
et

u
rn
f
′ i(
x i

)

x?1 = 0.8

x?2 = 0.2λ?

Water-filling: Equalize marginal returns across active coordinates

f ′1(x) = 3/(1 + x)

f ′2(x) = 2/(1 + x)

f ′3(x) = 1.5/(1 + x)

f ′4(x) = 1/(1 + x)

f ′5(x) = 0.5/(1 + x)

Figure 12.1: Optimal strategic behavior in a multi-task benchmark with five tasks
via water filling: Lower the water level (dashed line) from top to bottom until you
find coordinates of equal marginal return that sum up to 1.

This corresponds to the optimization problem:

max
xi≥0

k∑
i=1

fi(xi) s.t.
k∑

i=1

xi = 1

The problem has a nice optimal solution that we can find via a “water filling”
argument. The water level corresponds to the current marginal return that
we achieve. We start high and continually decrease the water level until we
fully spend our budget.

More precisely, start from the coordinate i1 with the highest marginal re-
turn f ′i1(0) at 0. As you increase this coordinate xi1 , the marginal return f ′i1(xi1)
decreases. Eventually, you hit a second coordinate i2 whose marginal re-
turn f ′i2(0) at 0 is equal to f ′i1(xi1). Now you increase both of these coordinates
while equalizing their marginal returns. Eventually, you activate a third
coordinate, and so on. We continue until we spend our budget of effort, that
is, the active coordinates sum to 1. At this point, we will have found an
optimal marginal return λ⋆ ≥ 0 that’s equal across all active coordinates.

The optimal effort allocation prioritizes tasks with the greatest marginal
returns. Moreover, the optimal solution is typically sparse. Most coordinates

16

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

are 0 and only a few are positive. This means that cardinal multi-task bench-
marks generally incentivize model builders to invest effort in a polarized
manner, concentrating on a few influential tasks. Moreover, these tasks are
the “easy” tasks, where improvements are relatively cheap to come by.

In a nutshell, to strategize in a multi-task benchmark, identify easy tasks
with large marginal returns to effort. Concentrate your efforts on those tasks
and neglect the other tasks. It’s easy to imagine, however, that this strategic
optimum doesn’t point toward the best way to actually improve a model.
Then again, over time competition might lead to an equilibrium where all
tasks have the same marginal returns. The reason is that if we repeatedly
apply the water filling strategy, we eventually converge to uniform marginal
returns.

From the perspective of the benchmark designer, it makes sense to antici-
pate strategic behavior by picking tasks with equal marginal returns to effort.
This will incentivize competitors to invest in broad improvements across all
tasks.

12.5 Empirical trade-offs in multi-task benchmarks

Do any of the theoretical issues we’ve encountered actually matter in prac-
tice? Perhaps these are just contrived counterexamples that don’t come up in
real multi-task benchmarks. The theory also didn’t give us any quantitative
sense about how bad the problem is. Yes, ranked voting is sensitive to irrele-
vant alternatives, but how sensitive is it? Likewise, rated voting is sensitive
to rescaling of preferences, but how much can that actually affect rankings?
We’ll now see an empirical answer to both questions.

As it turns out, there is something like an empirical analogue of Arrow’s
theorem for multi-task benchmarks. It applies to both cardinal and ordinal
aggregation. Loosely speaking, any multi-task benchmark that’s far from a
single task must be sensitive to irrelevant changes. So, if the benchmark is
truly multi-task, it must pay a price. To make the statement more precise,
we need to say what counts as irrelevant changes and what it means to be far
from a single task.

Measuring sensitivity to irrelevant changes in benchmarks

In line with social choice theory we put forward desirable properties of multi-
task benchmarks. We’ll then show that the only multi-task benchmarks that

17

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

satisfy them are essentially single task benchmarks.

• Independence of irrelevant models: Adding low-performing models
to a multi-task benchmark shouldn’t change the order of top con-
tenders.

• Independence of irrelevant task transformations: Changing a task
metric from s to as+ b for a > 0 shouldn’t change the overall ranking.

The first property seems like a no-brainer from a benchmarking perspec-
tive. It shouldn’t be that adding a low-performing model to the benchmark
changes the order of the top two contenders. This criterion is directly anal-
ogous to Arrow’s independence of irrelevant alternatives. But it’s perhaps
even more desirable in a benchmarking context. It’s a lot easier to a model
to a leaderboard than it is to run for president. If it’s possible to affect the
ranking significantly via low-performing model addition, we’ll likely see
strategic behavior along those lines.

The second criterion asks that equivalent task metrics shouldn’t affect the
over all ranking. For accuracy benchmarks this criterion has another natural
interpretation in terms of label errors. Suppose we add a p > 0 fraction
of random label errors to a classification benchmark with C classes. Any
accuracy number s will change to (1 − p)s + p/C. We get accuracy s on the
original labels and random guessing accuracy 1/C on the random labels.
But the accuracy transformation is strictly monotone for any p < 1. That
is, both benchmarks give us identical rankings. The two benchmarks are
operationally equivalent. The accuracy numbers have a monotone linear
relationship. In Chapter 9, we saw that many benchmarks, like ImageNet and
ImageNet V2, satisfy a monotone linear relationship. Our second criterion
says that it shouldn’t matter whether we put ImageNet or ImageNet V2 in
our multi-task benchmark.

The failure of either criterion indicates a sensitivity of the aggregate rank-
ing to changes that shouldn’t matter. To quantify the degree of sensitivity
to irrelevant changes, we need to quantify the magnitude of the change in
ranking. Here, we can use Kendall’s τ again, as we did in Chapter 11, to
measure the ordinal association of two rankings. Recall, assuming no ties,
Kendall’s τ equals

τ =
C −D(n

2
) ,

where C is the number of concordant pairs and D is the number of discordant
pairs. Two perfectly aligned rankings have τ = 1, reverse rankings have τ =
−1. For random rankings, we expect τ = 0.

18

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

We define sensitivity in terms of the quantity

1− τ
2

=
D(n
2
) ∈ [0,1] .

With this measure at hand, we can empirically evaluate how large we can
make the disagreement between the original ranking and the new ranking
under (a) addition of irrelevant models, and (b) irrelevant task transforma-
tions.

We can always avoid all problems with aggregation by going to a single-
task benchmark. Both properties hold, because there’s only one ranking.
This is the dictator clause in social choice theory. Arrow’s and Gibbard’s
theorem only apply to voting systems that aren’t dictatorial. Likewise, we’re
not going to say anything about single-task benchmarks. But we have to be
careful. We don’t get a multi-task benchmark simply by copying the same
task many times, or by including many very similar tasks. That would just
be a single-task benchmark in disguise. We therefore also need a robust
measure of task diversity that measures distance from single-task.

Trade-offs between sensitivity and diversity

To quantity the distance of a multi-task benchmark from being single-task,
we introduce a measure of task diversity. Diversity measures the degree to
which different tasks agree in their model rankings. Formally, we utilize
Kendall’s coefficient of concordance that is often used as a measure of inter-
rater agreement.

Suppose there are k tasks ranking m models. Denote by rij the rank
assigned by task i to model j. The total rank for candidate j is

Rj =
k∑

i=1

rij ,

and the mean of total ranks is R̄ = 1
2k(m+1). Kendall’s coefficient of concordance

is

W =
12S

k2(m3 −m)
with S =

m∑
j=1

(Rj − R̄)2 .

The coefficient satisfies 0 ≤W ≤ 1, where W = 1 indicates perfect agreement
among the tasks and W = 0 indicates no agreement. Random rankings have
expected agreement 1/k.

19

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

0.0 0.2 0.4 0.6 0.8 1.0
Diversity: 1−W

0.0

0.1

0.2

0.3

0.4

0.5

Se
ns

it
iv

it
y:

(1
−τ

)/
2

GLUE
SuperGLUE

OpenLLM

MMLU

BigBenchHard

MTEB

VTABImageNet

Constant

Random
Benchmarks

Regression

Figure 12.2: Trade-off between sensitivity and diversity for cardinal multi-task
benchmarks. Kendall’s τ rescaled to [0,1] so that 1/2 corresponds to random
rankings.

To get a measure of diversity, we consider 1−W . In the context of bench-
marking, we interpret Kendall’s W as a measure of closeness to single-task.
The case W = 0 corresponds to a single task benchmark, whereas W = 1 is
maximum diversity.

The figure contrasts diversity and sensitivity for a number of well-known
multi-task benchmarks. All of them fall on a line between a single-task
ranking, constant under irrelevant changes, and a random ranking. What
this means is that as you increase diversity, empirically, you also increase
sensitivity to irrelevant changes. This isn’t a theorem. It’s an empirical obser-
vation that appears to hold robustly for numerous multi-task benchmarks.
There is a similar trade-off for ordinal benchmarks.

12.6 Latent factors in benchmark performance

All aggregation rules we’ve seen so far are fixed, data-independent functions
of the individual task information. In principle, nothing stops us from con-
sidering data-dependent aggregation rules. One natural idea is to look at the

20

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

PC1 PC2 PC3 PC4 PC5
Principal Components

0.0

0.5

1.0
V

ar
ia

nc
e

E
xp

la
in

ed
R

at
io

70%

13%
4% 3% 2%

Direct evaluation

PC1 PC2 PC3 PC4 PC5
Principal Components

0.0

0.5

1.0

V
ar

ia
nc

e
E

xp
la

in
ed

R
at

io

86%

7% 2% 1% 1%

Tune-before-test

Figure 12.3: Principal components of the benchmark-model score matrix. Left:
Scores from direct evaluation. Right: Scores after tune-before-test.

top principal component of the benchmark-model score matrix. Specifically,
consider a matrix B such that entry Bij corresponds to the score of model j
on task i.

The benchmark-model matrix is close to low rank. If we compute bench-
mark scores under direct evaluation, we can approximate the matrix well
using a rank-5 matrix. In line with Chapter 11, the benchmark-model ma-
trix is even closer to rank 1 when we look at scores under tune-before-test
evaluation. Here, the matrix is essentially rank 1. Benchmark results are
essentially one-dimensional. What is that one dimension?

The first principal component (PC1) corresponds to the vector correspond-
ing to the largest singular value of the benchmark-model matrix. This is the
direction along which models (row vector in the matrix) have the highest
variance. We can compute the projection of each model vector onto the first
component (PC1 score). The length of this projection corresponds strongly
with the pre-training FLOP count for the model.

This suggests, perhaps intuitively, that benchmark performance is primar-
ily a function of pre-training compute. But it’s less clear if there’s a strong
meaning to the other components. Especially under direct evaluation, the re-
maining principal components still have non-negligible weight. Researchers
have attempted to map these components to specific capabilities that the
model might have. It’s also plausible that these components have something
to do with task adaptation. Since the magnitude of the second principal
component shrinks under tune-before-test evaluation, it might tell us how
much a model can benefit from task adaptation.

21

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

1020 1021 1022 1023 1024

Pre-training compute (FLOPs)

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0
P

C
1

sc
or

e
Model family

Pythia

Llama

Qwen

Gemma

Yi

Figure 12.4: The first principal component of the benchmark-model matrix corre-
lates strongly with pretraining compute.

12.7 Notes

Social choice theory. Our exposition of voting and social choice draws
on an excellent introductory chapter by Easley and Kleinberg.20 Taylor’s
text Social Choice and the Mathematics of Manipulation is comprehensive
reference for social choice theory.21 We only scratched the surface of the
topic. Wikipedia lists 23 single-winner voting systems judged across 17
different criteria. There’s a lot more to learn.

Rofin et al. (2023) use social choice theory to design multi-task benchmarks.
Specifically, they propose a framework, Vote’n’Rank, combining eight aggre-
gation procedures. With the goal to improve over mean score aggregation,
the work evaluates various properties of these alternative aggregation rules.

The trade-offs between diversity and stability in multitask benchmarks are
due to Zhang and Hardt.22

Perspectives on multi-task benchmarks. Bommasani et al. discuss chal-
lenges with “meta-benchmarks”, what we call multi-task benchmarks.23

They argue that meta-benchmarks may make it difficult to distinguish gen-
uine improvements from clever ways to adapt to the different tasks. In
addition, specific improvements relating to data selection, training objec-
tives, and architectures, may be more difficult to detect from broad meta-

22

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

benchmarks. McIntosh et al.24 broadly examine pitfalls with NLP bench-
marks, primarily multi-task benchmarks, along numerous criteria. Etha-
yarajh and Jurafsky apply microeconomic principles to NLP benchmarks to
argue that they may poorly capture the utility of the NLP researcher.25

Madaan et al. measure variance in LLM benchmarking results.26 Dehgani
et al. show how different subsets of tasks in multi-task benchmarks can lead
to different winners, a problem they call benchmark lottery.27 Zheng et al.28

show how adversarially created constant predictors that always return the
same fixed value can score high on multi-task benchmarks. Pacchiardi et al.
demonstrate how simple n-gram models can solve various BIG-Bench tasks
without achieving the capabilities that the task aims to test.29

Skill-Mix is a creative take on multi-task benchmarking.30 Rather than
aggregating over tasks, Skill-Mix will mix challenges from different tasks
into a single prompt.

Principal components and observational scaling laws. The observation
about the low-rank nature of the benchmark-model matrix is from a paper on
observational scaling laws.31 Observational scaling laws are scaling laws for
downstream benchmark performance derived from the benchmark-model
matrix. The plots here are from Zhang, Dominguez-Olmedo and Hardt, who
compared the low-rank approximations of the benchmark-model matrix
before and after applying tune-before test (cf. Chapter 11).32

Efficient evaluation. One major problem with multi-task benchmarks is
that evaluation gets very slow. Even major companies, like Anthropic, found
BIG-Bench too “unwieldy” in practice:

While it was a useful exercise to try to implement BIG-Bench,
we found it sufficiently unwieldy that we dropped it after this
experiment.33

This has motivated much work on methods that speed up evaluation. One
approach is to predict performance across many benchmarks from fewer
evaluations.34,35 This is in some sense an alternative to multi-task bench-
marking. Rather than aggregating many evaluations, efficient evaluation
tries to work from fewer evaluations to begin with. There is, however, evi-
dence that efficient evaluation—while accurate on typical models—may fail
to give accurate estimates on new models.36

23

https://mlbenchmarks.org

Working draft available at https://mlbenchmarks.org

Bibliography

[1] Jason Wei. Successful language model evals. https://www.jasonwei.net/blog/

evals, 2024. Blog post, May 24, 2024.
[2] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid,

Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. Transactions on machine learning research, 2023.

[3] BIG-bench authors. BIG-bench: Self awareness task. https://github.com/google/
BIG-bench/tree/main/bigbench/benchmark_tasks/self_awareness, 2025. Ac-
cessed: 2025-10-06.

[4] BIG-Bench authors. Big-bench: Beyond the imitation game benchmark. https:

//github.com/google/BIG-bench, 2025. Accessed: 2025-10-06.
[5] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay,

Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou,
et al. Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261, 2022.

[6] Clementine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas
Wolf. Open llm performances are plateauing, let’s make the leaderboard steep
again. https://huggingface.co/spaces/open-llm-leaderboard/blog, 2024. Hug-
ging Face Spaces blog, retrieved 2025-10-07.

[7] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi,
Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle
McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang,
Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 07
2024.

[8] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Max Ku, Kai Wang, Alex Zhuang,
Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.
Accepted at NeurIPS 2024 (Datasets & Benchmarks track).

[9] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe
Pang, Julien Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level
google-proof q&a benchmark. In Proceedings of the Conference on Learning on the Move
(COLM) 2024, 2024. arXiv preprint arXiv:2311.12022.

24

https://mlbenchmarks.org
https://www.jasonwei.net/blog/evals
https://www.jasonwei.net/blog/evals
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/self_awareness
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/self_awareness
https://github.com/google/BIG-bench
https://github.com/google/BIG-bench
https://huggingface.co/spaces/open-llm-leaderboard/blog

Working draft available at https://mlbenchmarks.org

[10] Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr:
Testing the limits of chain-of-thought with multistep soft reasoning. arXiv preprint
arXiv:2310.16049, 2023. Submitted to openreview / under review.

[11] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. In NeurIPS 2021 Datasets and Benchmarks Workshop, 2021. Also arXiv
preprint arXiv:2103.03874.

[12] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan,
Denny Zhou, and Le Hou. Instruction-following evaluation for large language models.
arXiv preprint arXiv:2311.07911, 2023.

[13] Clémentine Fourrier. It’s been a wild ride, folks :) (end of the open llm
leaderboard). https://huggingface.co/spaces/open-llm-leaderboard/open_

llm_leaderboard/discussions/1135, 2025. Hugging Face Spaces discussion, pinned
on Mar 13, 2025.

[14] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro
Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic
evaluation of language models. arXiv preprint arXiv:2211.09110, 2022.

[15] Jialiang Xu, Yifan Mai, and Percy Liang. Helm capabilities: Evaluating lms capability
by capability. https://crfm.stanford.edu/2025/03/20/helm-capabilities.html,
2025. Accessed: 2025-10-06.

[16] Kenneth J Arrow. A difficulty in the concept of social welfare. Journal of political
economy, 58(4):328–346, 1950.

[17] Kenneth J Arrow. Social choice and individual values. Yale University Press, 2012.
[18] Allan Gibbard. Manipulation of voting schemes: a general result. Econometrica: journal

of the Econometric Society, pages 587–601, 1973.
[19] Allan Gibbard. Manipulation of schemes that mix voting with chance. Econometrica:

Journal of the Econometric Society, pages 665–681, 1977.
[20] David Easley and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a

highly connected world, volume 1. Cambridge university Press, 2010.
[21] Alan D Taylor. Social choice and the mathematics of manipulation. Cambridge University

Press, 2005.
[22] Guanhua Zhang and Moritz Hardt. Inherent trade-offs between diversity and stability

in multi-task benchmarks. arXiv preprint arXiv:2405.01719, 2024.
[23] Rishi Bommasani, Kevin Klyman, Shayne Longpre, Sayash Kapoor, Nestor Maslej,

Betty Xiong, Daniel Zhang, and Percy Liang. The foundation model transparency
index. arXiv preprint arXiv:2310.12941, 2023.

[24] Timothy R McIntosh, Teo Susnjak, Nalin Arachchilage, Tong Liu, Paul Watters, and
Malka N Halgamuge. Inadequacies of large language model benchmarks in the era of
generative artificial intelligence. arXiv preprint arXiv:2402.09880, 2024.

[25] Kawin Ethayarajh and Dan Jurafsky. Utility is in the eye of the user: A critique of nlp
leaderboards. arXiv preprint arXiv:2009.13888, 2020.

[26] Lovish Madaan, Aaditya K Singh, Rylan Schaeffer, Andrew Poulton, Sanmi Koyejo,
Pontus Stenetorp, Sharan Narang, and Dieuwke Hupkes. Quantifying variance in
evaluation benchmarks, 2024. URL https://arxiv. org/abs/2406.10229.

25

https://mlbenchmarks.org
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/1135
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/1135
https://crfm.stanford.edu/2025/03/20/helm-capabilities.html

Working draft available at https://mlbenchmarks.org

[27] Mostafa Dehghani, Yi Tay, Alexey A Gritsenko, Zhe Zhao, Neil Houlsby, Fernando
Diaz, Donald Metzler, and Oriol Vinyals. The benchmark lottery. arXiv preprint
arXiv:2107.07002, 2021.

[28] Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Jing Jiang, and Min Lin. Cheat-
ing automatic llm benchmarks: Null models achieve high win rates. arXiv preprint
arXiv:2410.07137, 2024.

[29] Lorenzo Pacchiardi, Marko Tesic, Lucy G Cheke, and José Hernández-Orallo. Leaving
the barn door open for clever hans: Simple features predict llm benchmark answers.
arXiv preprint arXiv:2410.11672, 2024.

[30] Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and
Sanjeev Arora. Skill-Mix: A flexible and expandable family of evaluations for ai
models. arXiv preprint arXiv:2310.17567, 2023.

[31] Yangjun Ruan, Chris J Maddison, and Tatsunori B Hashimoto. Observational scaling
laws and the predictability of langauge model performance. Advances in Neural
Information Processing Systems, 37:15841–15892, 2024.

[32] Guanhua Zhang, Ricardo Dominguez-Olmedo, and Moritz Hardt. Train-before-test
harmonizes language model rankings. arXiv preprint arXiv:2507.05195, 2025.

[33] Anthropic. Challenges in evaluating ai systems, 2023. Accessed 2025-07-22.
[34] Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor points: Bench-

marking models with much fewer examples. arXiv preprint arXiv:2309.08638, 2023.
[35] Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail

Yurochkin. tinybenchmarks: evaluating llms with fewer examples. arXiv preprint
arXiv:2402.14992, 2024.

[36] Guanhua Zhang, Florian E Dorner, and Moritz Hardt. How benchmark prediction
from fewer data misses the mark. arXiv preprint arXiv:2506.07673, 2025.

26

https://mlbenchmarks.org

	The problem of aggregation
	Multi-task benchmarks
	Problems of aggregation and voting systems
	Ranked voting systems
	Majority vote and Condorcet's paradox
	Positional voting
	Arrow's theorem

	Rated voting
	Strategic behavior

	Empirical trade-offs in multi-task benchmarks
	Measuring sensitivity to irrelevant changes in benchmarks
	Trade-offs between sensitivity and diversity

	Latent factors in benchmark performance
	Notes

