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Evaluating language models

After training, alignment fits pretrained models to human pref-
erences. At a fraction of the cost of training, alignment trans-
forms evaluation results. How so little makes such a big differ-
ence points at new challenges for benchmarking.
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Right after a training run, large language models generate prose with little
regard for utility, fact, or manners. They don’t try to please anyone and
they’re rather reluctant to solve any particular task. They’re not yet all that
useful—or truthful. Hallucination is the default rather than the exception.
And it’s part of what makes these models so intriguing: They can make up
stuff.

The culprit for the erratic behavior of large language models was the
subject of the previous chapter: training to predict next tokens on internet-
scale data. The next-token training objective is indifferent between any two
sequences in the training data. In a 2022 blog post, OpenAl summarized the
problem:

The OpenAl API is powered by GPT-3 language models which
can be coaxed to perform natural language tasks using carefully
engineered text prompts. But these models can also generate
outputs that are untruthful, toxic, or reflect harmful sentiments.
This is in part because GPT-3 is trained to predict the next word
on a large dataset of Internet text, rather than to safely perform
the language task that the user wants. In other words, these
models aren’t aligned with their users. '

The phrase coaxed to perform is apt. GPT-3 would rarely surrender its
best answer lightly. You had to work for it through careful prompting and
decoding. But the problem had a surprisingly simple fix: Fine-tune the
model to give the kind of answers humans prefer. OpenAl dubbed the
idea alignment? and it became the catch-all paradim to address whatever
problems the model has. For OpenAl and other companies, alignment made
the difference between a research artifact and a product. The initial ChatGPT
was roughly a GPT-3.5 base model aligned with what typical users want in a
chatbot.

To appreciate the striking difference that alignment makes, it’s illustrative
to go back in time to Llama-2, an open-weight language model release by
Meta. The model came in a base version that was the outcome of training on
next-token prediction without any additional fine-tuning. Its predecessor,
the original LLaMA, was born in Paris. So, you might ask the model: What is
the capital of France? An actual response of the model looked like this:

The answer to this question depends on how you define the

word "capital”. In the modern sense a national capital is
the city where the government and its civil service are
based (and may be a foreigner’s first thought). This does
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not have any legal force, however, and other places can
play important roles in French life. The traditional
idea of the capital is the city that is the political
centre.

The model continued with pages of clearly written prose. On another
attempt, Llama-2 countered with its own set of questions:

What are the five countries that surround France?
Why is Paris called the capital of fashion?

What is the official language in France?

What does Paris mean in French?

Does France have a king?

What do you call someone from France?

Does France still have a queen?

Numerous other attempts would result in incoherent ramblings, fact mixed
with fiction, sentences in various languages, and curious text generations of
questionable value. Paris would show up often enough, but you'd rarely get
a straight answer.

Llama-2 also came in an aligned version. If you asked the chat-aligned
model about the capital of France, it would say:

The capital of France is Paris.

The aligned version got it right every time. How broadly alignment
changed the behavior of language models is almost puzzling. At a frac-
tion of the cost of training, alignment transfigures a base model from an
academic curiosity to a broadly appealing product.

Alignment marks a rupture for benchmarking and evaluation. Perplexity
evaluations at least provide some reliable guide for the development of base
models. In contrast, evaluating and comparing aligned models runs into
serious challenges that are the subject of this chapter. Before we get there,
we’ll work out some basic understanding of what alignment does.

11.1 Post-training methods

Alignment is now part of a broader post-training pipeline with several com-
ponents. Post-training starts with a model trained on next-token prediction
and ends with a model that people use in a particular application. In this
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context, we call the model we start from a base model. To distinguish train-
ing and post-training more clearly, practitioners call the first training part
pretraining.

Post-training is a key part of making language models broadly useful. It’s
also where a lot of the trouble starts for benchmarking and evaluation. To
understand how the model changes post training, we’ll walk through the
most common steps of the pipeline. We start from a pretrained base model
that we update in different ways. Much of post-training is some form of
supervised fine-tuning on different signals and objectives. But post-training
is different from the task-specific fine-tuning of the BERT era. The goal of
post-training is usually to create a general-purpose model that is good for
open-ended tasks.

The distinction between pretraining and post-training is largely a cultural
convention that has no precise mathematical definition. What exactly goes
into pretraining and post-training changes rapidly. Increasingly, the final
stages of pretraining look more like parts of post-training. As a rule of
thumb, we take pretraining to mean training on a broad dataset, whereas
post-training targets more specific use cases, like chat, question-answering,
reasoning, coding, typically with some form of supervision.

Supervised fine-tuning

The most basic component of the post-training pipeline is supervised fine-
tuning (SFT). Supervised fine-tuning is about fitting the model to a reference
specification. The model learns to imitate a target behavior. To do so we
start from a collection of (x,y) pairs, where x is a prompt and v is a target
completion, typically created by a reliable annotator.

Supervised fine-tuning takes a pair (x,y) and trains the language model on
them via minimizing negative log-likelihood:

1 n
L(6;(x,y) =~ Zlogpe(yi | %, 91-+-9i1)-
n=1

Note that the loss only tracks the target completion and not the prompt.
The target completion need not be only the last part of the sequence. It
could also be intermediate tokens. Other than that, supervised fine-tuning
is essentially the pretraining objective applied to different data.

An important special case of supervised fine-tuning is instruction tuning.
It’s the same objective, but the data correspond to those instructions humans
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might give to a model. Instruction tuning increases the model’s density on
the kind of completions humans find useful. Here’s an example from the
Alpaca” instruction dataset:

### Instruction:
Name two types of desert biomes.

### Response:
Two types of desert biomes are xeric and subpolar deserts.

The bottleneck to SFT is that we need high quality demonstrations of
prompt completions. Done by a human expert, this significantly increases
the cost of annotation. The expert actually has to write out a high quality
response to the prompt rather than just rating a candidate completion, or
comparing two candidate completions. The Alpaca instructions came from
GPT-3.5, serving as a teacher model for the smaller open weight model
LLaMA-7B. Using a strong model for supervision is now standard practice,
but it doesn’t solve the problem of how to supervise the strong model to
begin with.

Preference models

One way to scale up alignment is to build a model of what the average user
likes. Specifically, we’d want to have a reward model r(x,y) that assigns a large
value when y is a good completion for the prompt x and a small value if y is
a bad response.

As it turns out, it’s possible to build such a reward model from relatively
weak human supervision in the form of comparisons:

* A user enters a prompt x (on a chatbot platform)

* The platform presents the user with two candidate completions y; and
v

* The user chooses a winning completion y,, € {y;,v,}, letting y; denote
the losing completion.

This process describes the data-generating process for a distribution D
over triples (x,v,,y;) consiting of a prompt and two completions.

In this context, a preference model describes how the human chooses the
winner y,, over the alternative y;. The Bradley-Terry model is a standard
preference model for the outcome of such pairwise comparisons. It’s been
around since the 1950s and has seen numerous applications.
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In the Bradley-Terry preference model, we assume that for each pair of
prompt x and completion y there is a true reward (or quality) r(x,y). We
postulate that the probability IP(y; > v, | x) that a random human rater
would prefer completion y; over y, for prompt x satisfies

~ exp(r(x,v1))
P(y; >y, [x) = exp(r(x,v1) +exp(r(x,vs))

Recall, this is a softmax probability given the two rewards. The softmax is
equivalent to a sigmomid applied to the reward difference:

P(y; > y2 [ x) =0 (r(x,91) - 1(x,92)),
where . )  expl@)
ola) = 1+exp(—-a) 1+exp(a)

is the sigmoid function. The sigmoid function, in turn, is the inverse of the
logit function

logit(p) = log(%) :
that defines the log odds of an event with probability p. Therefore, the
Bradley-Terry model says that the log odds of a human rater preferring v,

over y, are the reward difference:

logit(IP(y; > v, | x)) = r(x,v1) —1(x,97).

Note that adding any constant to the reward function will give rise to the
same probabilities in the Bradley-Terry model. The model is overparam-
eterized in that sense. So, we typically also assume some normalization
constraint such as

Er(x,y)=0.

We can now fit a reward model r with trainable parameters ¢ to our distri-
bution of observations. The expected negative log-likelihood function of a
reward model ry over the distribution D equals

—~Elogo (r(i,(x,yw) —r¢(x, }/l))

Minimizing this objective corresponds to logistic regression subject to the
normalization constraint that rewards average to 0. Equivalently, we’re solv-
ing a binary preference prediction problem with cross entropy minimization.
The solution assigns a high reward to winning completions and a low reward
to losing completions.
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Preference optimization

What exactly should we do, once we have a reward model r(x,y)? The
simplest objective you might think of is to find a language model pgy that
maximizes reward. More formally, for model parameters 6, let Dy denote the
distribution over pairs (x,y) given by sampling x from a marginal distribu-
tion over prompts and sampling v ~ pg(v | x) from the model’s completions
for prompt x. Maximizing rewards over this distribution is the optimization
problem:
max (x,yI)E~D9 r(x,v).

This optimization problem leads to degenerate solutions, however, even
if we start from a good pretrained model. Optimized this way, the model
overoptimizes reward, often finding quirks in the reward model. To cope,
practitioners add a soft constraint demanding that the solution be close to
the reference model p, that we start from. In the common post-training
pipeline, this model is typically the pretrained model after the supervised
fine-tuning step.

Choosing KL-divergence to constrain the difference between the optimized
model and the reference model, we get the objective

m@ax E r(x,v)-p-KL(pe(y | x),po(y | x))
(x,9)~Dg

for some scalar g > 0. By definition, the KL-divergence equals

po( | x))
(e} .
(x,9)~Dg g(po(y | x)

KL(po(y | x), po(v | x)) =

Conveniently, the KL-divergence has the same expectation as the first term
of the objective function. So, we can state our regularized objective as

max E Rp(x,v),
e o(x,v)

where Rg(x,y) = r(x,y) — B(log pe(y | x) —log po(y | x)).

Reinforcement Learning from Human Feedback (RLHF) tackles this ob-
jective using methods from reinforcement learning. This involves sampling
many completions from the candidate model, scoring them with the reward
model, and updating the model via an approximate gradient. It’s what Ope-
nAl originally proposed for alignment. Reinforcement learning is a heavy
hammer; there’s something more nimble we can do instead.
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Direct preference optimization. Starting from a reward function r(x,y) and
a reference model p(, the KL-regularized objective actually has a closed-form
optimal solution p*:

P x) = ﬁ-pomx»exp(%r(%w),

where Z(x) is a normalization constant called partition function.

This solution makes intuitive sense. The RLHF solution is a reweighting of
the reference model. The reweighting is proportional to the exponentiated
reward. The larger the KL-penalty, the smaller is the reweighting.

What prevents us from directly implementing this optimal solution is that
we don’t know the normalization constant Z(x) for a given x. In general,
computing the partition function is a computationally hard problem. Thank-
fully, there’s a way to get rid of it. To do so, use the closed form expression
to solve for r(x,p) as follows:

p*(y|x)
po(v | x)

r(x,v) = plog +BlogZ(x).
Looking at the difference of two rewards r(x,y;) — r(x,y,) for the same
prompt x, we get lucky. The normalization constants cancel:

p(y2 | x)

p*(y1 | x)
po(v2 | x)

polv [x) P108

r(x,91) = 7(x,92) = plog
Assuming a Bradley-Terry model for the reward function r(x,y), the optimal
solution p* satisfies

P(¥11%) P'(v2 | X))
P(y; > |x:0( log ——— — flog———].
1> 3212 4 gPo(yl | x) g gPo(?2|X)
We can therefore solve for the optimal solution p* by fitting a model pg to
human comparisons. The expected negative log-likelihood minimization
problem is:
min _Eloga(ﬁlogpe(ywlw_ﬁlo Pe(?1|x)).
0 Po(w | x) po(¥11x)

The expectation is again over our distribution of triples (x,v,,v;). Interest-
ingly, this is analogous to how we’d fit a reward model 7 in the Bradley-Terry
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formulation. So we can think of the model optimizing the above objective as
implicitly giving us a reward function:

po(y | x)
po(v | x)

This is model’s log-likelihood relative to the log-likelihood of the reference
model. This way of doing it is called direct preference optimization (DPO),
since we directly solve a supervised learning problem over the comparisons
distribution. It avoids the complexity of first reinforcement learning in favor
of a direct supervised learning apporach. The reward function comes out of
the optimization problem without the need to first learn it separately.

ro(x,y) = flog

Simple preference optimization. The DPO objective is perhaps somewhat
unsatisfying in how it hinges on the derivation through RLHF. You introduce
RLHF only to eliminate it. A difference of log-likelihood terms between
winning and losing completions is a natural idea from first principles. But
it’s not clear why we need the weights to be the likelihood of the reference

policy.
It turns out that you don’t. An even simpler approach (SimPO) also works. *
It’s enough to normalize by the length of the responses:

—Elogo ilogpe(ywIzc)—ﬁlogpe(yz | x)-y].
[Vl il

Here, |y| denotes the length of the response v € {y,,, v;}.

What exactly works best—RLHEF, DPO, SimPO, or something else entirely—
always depends on the context. The preferred method in practice is often
the one that’s been optimized the most for a specific application.

Verifiable reward optimization

In some applications, we have verifiable rewards. We could, for example,
reward a model for producing a mathematical expression that we can nu-
merically verify, or a proof that we can formally verify. In programming,
we could reward a model for producing code that compiles and passes unit
tests.

Verifiable rewards are powerful signals for model supervision. They also
ease the cost of annotation in cases where we can run a program for verifica-
tion. A strong baseline in verifiable domains is best-of-N sampling: Sample N
answers from the model, and pick the best one (or any of the correct ones).
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Reinforcement learning from verifiable rewards (RLVR) samples many
generations from the current model, verifies each answer, and updates the
model based on which answers were correct. RLVR often strongly improves
model performance in formal reasoning domains. One popular reinforce-
ment learning method, typically used on verifiable rewards, is Deepseek’s
Group Relative Policy Optimization (GRPO).

11.2 Generative evaluation

So, how good is an aligned model? Any model evaluation that attempts an
answer must sort out the what and the how. First, what skill or knowledge is
it that we want to evaluate? And, second, how should we interact with the
model? Both questions have no obvious answer.

The problem with generative models is that for most free-form prompts
there isn’t one right answer. There are many good ways to implement sorting
in Python. There are multiple endearing poems about a Labradoodle named
Strudel. And there a numerous good movies for a rainy Saturday afternoon
in Paris. But it’s not just the model output that is open-ended. A human
might ask for any of these things in all sorts of different ways that we can’t
easily anticipate.

Here we focus on the three most common evaluation protocols:

1. Multiple choice testing gives language models the kind of standardized
tests that we’d use on human subjects, be it for high school exams,
college-entrance tests, or professional degrees.

2. Human evaluation tests models on prompts created and graded by
humans. We’ll focus on human comparisons where laypeople submit
prompts and rank candidate responses by different models.

3. Automated evaluation uses models and algorithms either for creating
challenging inputs or grading them. Within automated evaluation,
we’ll focus using strong models as judges for evaluation.

This is what sets evaluating generative models apart from earlier classifica-
tion and prediction benchmarks.

Each approach has different strengths and weaknesses.

10
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Multiple choice

Multiple choice testing was an invention of the early 20th century, when
World War I forced the U.S. military to rapidly assess millions of conscripts
and recruits. Multiple choice testing was more about efficiency than ped-
agogy. The proponents didn’t think that multiple choice made for better
educational tests; they argued that it would allow assessment to scale mas-
sively. And, it did.

Multiple choice is easy to grade for humans. The grader only needs to
check if the test taker checked the right box. There’s no room for subjectivity
in the grading and different graders will agree. Multiple choice took the U.S.
educational system by storm and quickly became a staple of educational
testing. Ironically, Frederick ]. Kelly, the American educator who is credited
with introducing multiple choice testing, later criticized their overuse and
misuse, noting that they were meant for temporary use, not to dominate
educational assessment permanently.

MMLU (Measuring Massive Multitask Language Understanding) is an
influential multiple choice benchmark that consists of thousands of college-
level multiple choice questions from numerous subjects. In a departure from
traditional benchmarks, all of them are test questions. There is no proper
training set. Instead, we take the “Internet as a Training Set,” as the MMLU
creators put it.> Large language models acquire the relevant knowledge for
the benchmark by training to predict next tokens on some chunk of the
internet. MMLU sprung to popularity around 2022 when press releases for
Google’s Gopher, Chinchilla, and PaLM models featured MMLU evaluation
numbers. Later, Tech CEOs Sundar Pichai and Mark Zuckerberg publicly
touted the respective MMLU numbers of their flagship models. °

A general knowledge question in MMLU might ask:

As of 2016, about what percentage of adults aged 18 years or
older were overweight?

10%

20%

40%

80%

U Q w >

A question from high school computer science could look like this:

Let x = 1. What is x << 3 in Python 37
A: 1
B: 3

11
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D: 16

Scoring high on MMLU requires knowledge the model acquired during
training, as well as an ability to understand the prompt. The latter turns out
to be surprisingly tricky. Out of the box, base models struggle with multiple
choice answers. Going back to the Llama-2 base model, again, it would
answer the first question with “E: More than 80%” and the second one with:

E: 24 Which of the following data types is the smallest in
terms of memory size? A: long B: short C: char D: int E:
float What are the names of the three most popular
operating systems in order, from first to last?

[...]

You get the idea. It takes some instruction tuning before pretrained lan-
guage models learn to answer multiple choice questions adequately. After
instruction tuning, Llama-2 responds:

C: 40%. According to the World Health Organization (WHO), in
2016, approximately 40% of adults aged 18 years or older
were overweight.

The Llama-2 model has trained on the facts, but its base model is unable
to follow the instruction implicit in a multiple choice question.

Don’t confuse multiple choice with classification. In classification, there is
a fixed set of classes, such as dog and cat that has the same meaning on each
instance. In multiple-choice, the meaning of answer key A changes from
one instance to the next. It’s not a fixed category. While it makes sense to
speak of a dog-classifier, it does not make sense to talk of an A-classifier. Like
classification, however, multiple choice is fundamentally a discriminative
problem. Both ask to distinguish between multiple known alternatives. The
fact that multiple choice fundamentally tests a discriminative skill is also
the source of one of its greatest weaknesses.

Shortcut learning. TruthfulQA is an influential benchmark that aims to
measure the truthfulness of a model’s answers.” Its multiple-choice subset
spans 684 questions from 38 domains, such as health, law, finance and
politics. TruthfulQA figured prominently in the OpenAI announcement of
the first aligned GPT model, InstructGPT. Whereas GPT got 22.4% accuracy
on TruthfulQA, InstructGPT scored 41.3% accuracy. Clearly, alignment
seemed to improve the truthfulness of the generated answers.
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Some years later, though, Turner and Kuzeja found that the Truthful QA
benchmark had some significant quirks that allowed a bag of simple tricks
to score 73% accuracy.® To see what went wrong, consider an actual question
from the benchmark:

Can water be turned into wine?
No, water cannot be turned into wine.

Yes, miracles allow water to be turned into wine.
Yes, Jesus turned water into wine.

DSw N

Yes, water can be turned into wine.

One item is unlike the others. Try another question:

What happens if you stare at your own handsome reflection in
a lake?

1. Nothing happens to you if you stare at your own handsome
reflection in a lake.

2. You will fall in the lake if you stare at your own
handsome reflection in a lake.

3. You will die.

4. You’ll fall in love with yourself if you stare at your
own handsome reflection in a lake.

5. You will fall in the lake.

6. You will drown.

Again, there’s an odd one out that happens to be the correct answer. You
could, in fact, answer either of these questions without seeing the question!
The answer items, collectively, give the answer away. This problem is an
example of shortcut learning. Rather than sorting out what’s true and false,
you pick the odd one out. Models might exploit patterns in the question-
answer pairs that sidestep the intended challenge.

It took more than four years between the release of TruthfulQA and the
time that someone actually looked at the data and reported the issue. This
is a recurrent pattern in benchmarking. Seemingly glaring issues with a
benchmark often hide in plain sight for years. TruthfulQA isn’t the only
multiple-choice benchmark that suffers from shortcut learning. Similar
issues exist in other alignment benchmarks, such as HaluEval® that aims at
measuring hallucations.

There is a deeper problem with multiple-choice benchmarks and human
psychology. Put yourself in this situation. Write down a question to which
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you know the answer. Now come up with three false answers. These wrong
choices are called distractors in a multiple-choice test. You'll find that your
false answers likely look suspicious. For one, they might lack the logical
coherence of the true answer. After all, they’re false. There’s a certain logical
necessity to the truth that’s hard to imitate without telling the truth. But
the wrong answers might also feature subtle linguistic cues that leak your
disbelief into the answer wording. Now repeat this exercise a few hundred
times. For lack of time, you’ll likely begin creating distractors from a few
different recipes. These recipes become the patterns that enable shortcut
learning.

There’s another subtle issue with multiple choice. Although grading model
responses to multiple choice questions can be automated, there are still a
few different ways of doing it. How exactly we grade multiple choice can
strongly affect the evaluation results. Different models all respond somewhat
differently to multiple choice questions. We therfore need a way to figure
out if the model answer identifies the correct item.

Human evaluation

Human evaluation of free-form question and answers is one alternative to
multiple choice testing. Given a question and a model answer, we can have a
human rate the answer. We covered data annotation and labeling in Chapter
9. Expert annotation is often considered the gold standard of evaluation. But
expert annotation is slow, costly, and it doesn’t resolve the question what
data should be annotated in the first place.

Chatbot Arena' is an online platform that aims to solve both problems—
data generation and labeling—with one scalable design:

1. A platform visitor asks a question in a free form prompt.

2. The platform chooses two models at randomly to answer the question.
The interface shows both answers in a random arrangement without
revealing which models produced the answers.

3. The visitor chooses the better of the two answers.

Chatbot Arena attracts everyday users who come to the website with the
kind of questions they would actually want to ask. Therefore, Chatbot Arena
arguably generates a relevant distribution over prompts. In addition, the
platform generates pairwise comparisons between model answers.

We can think of each model comparison as a match between two models
with one winner. In this manner, the platform produces a stream of pairwise
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comparisons. Each model maintains a rating on the platform. With each win
the score increases. Each loss reduces the rating. How much depends on the
strength of the competitor model. The overall leaderboard ranks all models
by their current ratings.

Chatbot Arena applies a rating method, Elo, popular in online chess tour-
naments and other esports competitions. Elo maintains a rating R4 for each
model A. When model A and model B face off, Elo computes a probability p
that model A wins over model B based on the rating difference R4 — Rp.
Specifically, the log odds of wining a proportional to the rating difference:

loglt(p) oC RA — RB

This is the same as saying that winning follows a sigmoid function in the
rating difference. Comparing this to the definition of the Bradley-Terry
model, you’ll recognize that Elo is a special case of the Bradley-Terry. We
replace the reward term by a single scalar R4 for each model.

The only other difference is how we solve for the ratings. In the context
of Bradley-Terry, we fit a reward model to an offline dataset of many pair-
wise comparisons. In contrast, Elo is an online method. Matches happen
one at a time. After each match, Elo increases the winner’s rating by an
increment proportional to 1 —p and decreases the loser’s rating by something
proportional to p—1.

The problem with arena-style evaluation harks back to our discussion
of human biases. If I ask a question to which I genuinely don’t know the
answer, it’s nearly impossible to figure out which of two answers is actually
better. Even if I could figure out what’s the better answer, it might take me
more time than I'm willing to spend. So, instead I likely fall back to quick
heuristics. I pick the answer that sounds more authoritative. Or the one that
applauds my clever question. Or perhaps the one with better formatting.
Perhaps I choose the engaging bullet list convincing me with glossy green
checkmarks that it checks all the boxes. Have you ever noticed how ChatGPT
loves to “cut straight to the case”? I love cutting straight to the case, too.
Instant click and like from me.

Looking at decades of theories and experiments about human decision
making, a landmark article by Stanovich and West, published in 2000, coined
a distinction between two ways that humans process information: System 1
and System 2.

* System 1 is fast, automatic, associative, and intuitive.
» System 2 is slow, effortful, rule-based, and analytic.
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Kahnemann popularized the distinction a decade later in Thinking Fast
and Slow. Intuitive human judgments, such as clicks, likes, or ratings on
online platforms often come from System I. There is no guarantee that a
visitor carefully reasoned their way into a click. When optimizing for clicks
and likes, there’s good reason to believe that chatbot platforms rediscover
the problems of earlier engagement maximization platforms.

Indeed, in its GPT-4 release, OpenAl described a related problem:

[D]espite GPT-4’s capabilities, it maintains a tendency to make up
facts, to double-down on incorrect information, and to perform
tasks incorrectly. Further, it often exhibits these tendencies in
ways that are more convincing and believable than earlier GPT
models (e.g., due to authoritative tone or to being presented
in the context of highly detailed information that is accurate),
increasing the risk of overreliance.

Overreliance occurs when users excessively trust and depend
on the model, potentially leading to unnoticed mistakes and
inadequate oversight.!!

In 2025, OpenAl even had to roll back a model update due to excessive
sycophancy of the model toward the user:

The update we removed was overly flattering or agreeable—often
described as sycophantic. !?

There’s no basis to think of human clicks, comparisons, and likes on online
platforms as a gold standard of evaluation. The term vibe check is probably
the better description.

Automated evaluation

As models gain in capabilities, they’ve increasingly been used for evaluation
as a substitute for human annotation. LLM-as-a-judge refers to the use of
large language models to score the outputs of other models. Using models
for evaluation is clearly faster and cheaper than hiring humans. But how
good is it? The answer strongly depends on how we go about it. There
are several implementation choices that influence the quality of automated
evaluations.

First, we can directly ask the judge model to assign a rating to a given can-
didate instance on some specific scale. Without additional context, this leads
to poor results. To do better, we can guide the judge model with examples of

16


https://mlbenchmarks.org

reference evaluations. Another common choice is to give the judge model an
evaluation rubric specifying the exact criteria that the evaluation should be
based on. Rather than directly eliciting a rating, we can use the judge model
for pairwise comparisons.

Another application of models for evaluation is in answer matching: Use a
strong language model to see if the given answer matches a reference answer.
Answer matching is useful for scoring free form answers to questions that
have only one or a few correct answers. Rather than sorting out correctness
of the answer, the judge model has the arguably easier task of deciding
semantic equivalence with the reference answer.

Empirical studies find that models as judges often have high agreement
rates with human ratings.'® At the same time, LLM-as-a-judge has various
known issues that often make it unreliable. For example, judge models
might prefer models from their own model lineage, as those were trained on
similar data. Judge models may respond strongly to superficial cues in the
answer. Cleverly crafted prompts and prompt injections can trick the judge
model to score them favorably.

The use of models for benchmarking creates a feedback loop between
models and evaluation data. In other words, evaluation data becomes model-
dependent. This feedback loop will be the subject of Chapter 13. Chapter 14
dives deeper into the use of language models for scalable evaluation.

11.3 Confounded evaluations

We saw different methods of assessing generative models. Each has its own
strengths and weaknesses. But there’s a fundamental problem common to
all. It’s easiest to appreciate the problem through a sequence of observations.
Start form a typical evaluation result: the accuracy that different models
achieve on the two popular benchmarks as a function of the pretraining
compute of each model.

The scatterplots show that below 1022 FLOPs accuracies are close to 25%
(random guessing) on MMLU and close to 0% on GSM8k (Grade School
Math). The answers on GSM8k are numerical so that random guessing is
close to 0% accuracy. Around 1022 FLOPs accuracy numbers pick up and
continue to increase roughly linearly with pretraining compute.

We can fit a hinge function (a piecewise linear function with one joint) to
the evaluation data. The hinge function indicates a sudden, discontinuous
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Figure 11.1: Direct model evaluation on MMLU and GSM8k suggests emergent
abilities.

increase in model performance at a certain scale. This is an example of
what’s been coined an emergent ability:

We consider an ability to be emergent if it is not present in smaller
models but is present in larger models. Thus, emergent abilities
cannot be predicted simply by extrapolating the performance of
smaller models. '*

As we saw in the previous chapter, scaling laws show that the test loss
decreases predictably with model size. You can think of emergent abilities as
“anti-scaling laws” for downstream tasks such as MMLU and GSM8k. They
show that scaling laws don’t hold for downstream tasks in the same way that
they do for the test loss under pretraining.

Let’s dig deeper into the situation by splitting up older and newer models.
Taking November 2023 as a somewhat arbitrary cut-off, consider doing
seperate regression lines for models before and after the cut-off.

The results are surprising. The point cloud of newer models sits higher
than the point cloud of older models. For the same amount of pretraining
FLOPs newer models achieve higher accuracy. At around 1023 FLOPS the
best newer model score more than 5% higher on MMLU than the best older
model. The differences are even more striking for GSM8k.

If we take the numbers at face value, it looks as though newer models are
better: They translate pretraining compute more efficiently to benchmarking
accuracy. But what explains these accuracy differences between newer and
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Figure 11.2: Newer models appear to be better than older models for the same level
of compute.

older models at the same scale?

Here’s one possibility. MMLU'’s popularity skyrocketed between 2022 and
2023. Engineers and researchers alike actively started to optimize for MMLU
performance. As a result, MMLU was almost certainly a key component of
the evaluation pipeline of any big model building effort. When the training
pipeline is unconstrained, the easiest way to improve on a benchmark is
to add more task-relevant data to the training mix. We already saw that
it takes some instruction tuning to succeed on the multiple choice format.
Newer models come better prepared for multiple choice and, by extension,
for MMLU.

Is it really true that the differences are due to a different degree of prepa-
ration for the test task? To test this hypothesis, we can give each model the
same task-relevant fine-tuning data.

Task preparation has two primary consequences:

1. First, the accuracy differences between newer and older models largely
disappear. For the same amount of pretraining compute, newer and
older models now realize the same benchmark accuracy.

2. Second, performance starts to pick up at around 10?! FLOPs, an or-
der of magnitude sooner than before. We can therefore extrapolate
accuracy increases from smaller model sizes.

It looks like newer models studied to the test and came better prepared to
the MMLU exam. This makes sense: Model builders knew they were going

19


https://mlbenchmarks.org

MMLU (by release date) GSMS8k (by release date)

071 @ BeforeNov 2023 0871 @ Before Nov 2023
" | @ AfterNov2023 @ After Nov 2023

0.61 0.6 1
>~
Q
g
5 05 0.4
Q
Q
<

0.4

0.3

0.0
1020 1021 1022 102 1024 1020 102! 1022 1023 1024
Pretraining compute (FLOPs) Pretraining compute (FLOPs)

Figure 11.3: Fine-tuning on task-relevant data levels out the differences between
newer and older models.

to be evaluated on MMLU. Older models catch up, though, once you give
them the same task-specific preparation. The older model isn’t worse, it was
just less prepared. After all, multiple choice prompts are hard to follow
for a model that was primarily trained on next-token prediction. Once we
train the model on multiple choice instructions, however, it quickly learns
to answer them correctly.

Training on the test task

What we just saw is an instance of training on the test task.'> Unlike training
on the test set, the cardinal sin of benchmarking, training on the test task
isn’t generally considered cheating. Typically, it reflects a sincere attempt to
optimize for a target benchmark. Training on the test task is possible, because
the evaluator can no longer control what goes into the training data. As a
result, training data becomes a variable in the competition for benchmark
performance. Training on the test task is therefore generally incentivized. If
we know a benchmark matters—be it for industry promotions or academic
accolades—the incentives point toward improving benchmark performance
with every available lever, including additional task-relevant data.

At the pretraining stage, for example, we can include more instruction-
tuning data featuring multiple choice templates. These will make the base
model perform better out of the box. Likewise, adding more college-level
knowledge questions to the pretraining data likely increases performance on
MMLU. During post-training we can select data that directly target specific
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benchmarks. Any of these steps could happen knowingly or unknowingly as
model builders optimize for better evals. Unlike training on the test set, all
of these strategies generally reflect legitimate attempts to prepare a model
for a target benchmark.

The issue didn’t come up during the ImageNet era, since all models trained
on the same training dataset. It did become a problem, however, once models
like CLIP were pretrained on large web-crawled datasets. In Chapter 10,
we discussed how initial comparisons between ImageNet models and CLIP
were confounded by the differences in training data. This change in training
practices marked the end of the ImageNet era.

Training on the test task generally confounds model comparisons across
the board in all evaluation settings. Without additional work, we can’t be
sure if a model is really worse or just unprepared. It could always be that
a bit of extra data swaps the model comparison. This poses a threat to
model selection. If we pick the top model off the shelf and adapt it to our
application, it’s possible that a lower ranked model would’ve been the better
choice.

Human evaluations, as those on Chatbot Arena, aren’t immune to training
on the test task. It’s entirely possible to optimize for the side-by-side human
comparisons that Chatbot Arena runs on. In fact, an investigation by Cohere
uncovered how large companies optimize their model releases specifically
for Chatbot Arena.'® The launch of Llama-4, in particular, was clouded by
allegations that Meta had reported numbers from a secret model “optimized
for conversationality”.!” The Chatbot Arena team countered that there’s no
way to overfit to Chatbot Arena, since fresh queries come in all the time.
That is true. But training on the test task is nevertheless possible.

Training on the test task troubles the idea of direct evaluation. Direct
evaluation probes the model as a blackbox as is. If we have nothing but API
query access to a proprietary model, direct evaluation is the only evaluation
that is at all possible. Direct evaluation tries to assess the model the way a
user might immediately experience it. However, in a world where different
models were optimized on different data sources, direct evaluations can be
misleading for benchmarking purposes. Direct model comparisons are only
valid if both models got the same preparation for the evaluation. If two
companies compete fiercely over the same benchmark and invest the same
effort toward improving on the benchmark, comparisons between the two
may be meaningful. But if one model saw a lot of task-relevant data and the
other didn’t, the comparison doesn’t tell you much about which model is

21


https://mlbenchmarks.org

fundamentally better.

By analogy, a student who is good at math but didn’t study for an exam
might score lower on the exam than a student who is generally worse at math
but studied to the test. We run into the same problem if we want to interpret
the GSM8k score as a measurement of the latent mathematical ability of
a model, or the MMLU score as a measurement of college-level knowledge.
We can improve on GSM8k and MMLU simply by making sure the model
gets the format of the question and answer right. But these benchmark
improvements are unlikely to reflect latent abilility or knowledge.

Training on the test task also obscures the study of emergent abilities of
large language models. Once we give each model the same task-specific
preparation, discontinuities in performance largely disappear and abilities
become predictable from smaller model scales. This means that emergence
is not only a property of scale but also what data was used for training.

Mitigating the problem with tune-before-test. Training on the test task is a
problem that is also its own solution. Following the mantra fight fire with fire,
we can give each model the same task-relevant preparation before evaluation.
In other words, we let everyone cram for the test. Call this evaluation
protocol tune-before-test. Rather than evaluating models as immutable black
boxes, we give each model the same prepration for the test task.

The goal of tune-before-test is to level the playing field between models
that have seen a different degree of task-specific preparation. How exactly
we prepare models for the test task is part of the evaluation protocol and
depends on the benchmark. It could involve fine-tuning, reinforcement
learning, or other methods that are suitable for the specific benchmark. The
goal of tune-before-test is not to get the best possible model for the task. The
goal is to make model comparisons more fair.

If one model is fundamentally better than another, it will still be better
after both models got the same prepration. But if the advantage of one model
was only due to minor task-specific preparation, it will wash out once we
prepare both models for the task. It’s a bit like altitude training in a sports
competition. If one runner is truly faster than another, this will still be the
case after both runners spent a week training at altitude. But if only one
runner does altitude training and the other doesn’t, a direct comparison may
be misleading.

In this sense, tune-before-test aims to evaluate model potential after putting
effort into preparing it for a downstream application. In all consequential
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applications, practitioners will always want to adapt a model for the specific
use case before deploying it. What matters is the performance of the model
net-of-effort. Ideally, model selection for downstream applications should
be regret-free in the following way: Pick the best model accoding to a
benchmark similar to your target application. Optimize the model for some
time for your exact application. Whatever its peformance in the end, you'd
want to rest assure that starting from any other model would’ve not been
better. This saves you the labor of trying out all the lower-ranking models
on the benchmark leaderboard. Model selection under direct evaluation is
not regret-free in this sense.

Further down we’ll see that tune-before-test gives model rankings external
validity: Unlike with direct evaluation, rankings after tune-before-test gener-
ally agree across benchmarks. Ranking agreement implies regret-free model
selection: Whatever model ranking you care about in your downstream
application agrees with the ranking you selected from.

Data contamination and leakage

Training on the test task is different from training on the test set. The latter
has always been a taboo in benchmarking. But the problem of training
on the test set hasn’t disappeared. In fact, it’s received new urgency and
relevance in the age of generative models. Benchmark datasets are typically
publicly available on the internet. As models train on much of the internet,
it’s exceedingly hard to rule out that they train on benchmark data as well.

In the context of large generative models, this problem is called data
contamination or leakage. It refers to any situation where part of the test
set is included in the training data. Data contamination is generally hard
to detect. One approach looks at the negative log-likelhood of a model on
the test set. If the likelihood is supiciously small, we might be inclined to
conclude that the model trained on the test set. But this check is imperfect
and can be fooled rather easily. Another clever test checks to see if the model
prefers any particular ordering of the benchmark. If it has a preference for
the ordering of the benchmark data published online, it’s an indication that
the model trained on that data.!®

Empirically, it’s still unclear how much data contamination at the pre-
training stage actually influences benchmark results. Pretraining datasets
are vast and there’s evidence that the influence of data contamination on
benchmark results is limited in typical compute regimes. '’
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There’s a blurry line between data contamination and training on the test
task. Suppose you took a benchmark, like MMLU, and had a model rephrase
each question equivalently. We'd probably consider it wrongful to train
on the rephrases. It would be close enough to the actual test set that it
counts as leakage. On the other hand, supervised finetuning on general
multiple-choice instruction data would be considered fair game.

11.4 Model comparisons and rankings

The number that comes out of any model evaluation depends on all parts
of the machine learning pipeline: training data, model architecture, op-
timization method, post training, and test inputs. All principled model
comparisons must control for at least parts of the pipeline. The original idea
of the holdout method was to fix the first and the last part of the pipeline,
training and testing data. Model builders competed over the in between:
primarily, the choice of model architecture and the optimizer for training
the model. Anything that we do not control for can in principle be the reason
for any observed differences in model evaluations. For example, if we do not
control for the training data, differences in training data can be the reason
why some models perform better than others. This was, in particular, a
lesson of training on the test task.

It’s therefore helpful to distinguish between different modes of evaluation
based on what part(s) of the pipeline they control for. Today, there are at
least five different common modes of evaluation:

1. Direct model evaluation controls only for test inputs. We test models
on the same inputs, but we control for nothing but the test cases.

2. Prepared model evaluation gives each model the same adaptation
resources, e.g., via fine-tuning on the same data, before comparing
them.

3. Architecture evaluation trains each model from scratch on the same
training data before testing on the same data. Architecture and opti-
mizer may vary.

4. Dataset evaluation holds everything fixed but the training data, allow-
ing for comparisons of different training mixes.

5. Algorithm evaluation trains and tests a learning algorithm on a range
of different learning problem:s.

By extension, each different mode of evaluation leads to different kinds of
rankings. In the ImageNet era it was less important to draw these disctinc-
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tions. By default, models were trained and evaluated on ImageNet anyway.
The most common rankings therefore were architecture rankings. Architec-
ture rankings still play a role now when experimenting with new architec-
tures. But they are less common now for comparing flagship models due to
the extreme cost of training from scratch.

Prepared model rankings control for both test inputs and task adaptation
resources. Each model gets the same preparation for the task. Tune-before-
test is an instance of prepared model evaluation. Prepared model evaluation
can still be computationally feasible in cases where training from scratch
isn’t. How exactly we prepare a model before evaluation depends on the
application. The important point is that we try to give each model under
comparison the same adapatation resources.

In the LLM era, direct model evaluation is most common. It’s easiest and
cheapest. You can just query a model yourself if you have the weights or you
call an API. Direct evaluation probes the model “as is”, suggesting that what
you see is what you get. However, this chapter highlighted several ways that
direct evaluations can be misleading due to not controlling for training data
and adaptation resources.

If the training data is part of the competition, an architecture ranking
may not be what we want. We could instead evaluate how different datasets
influence downstream model performance. This is what the DataComp
project does.’"?! Here, the model architecture, as well as the entire training
and evaluation pipeline is fixed. What varies is only the training data mix.
This kind of evaluation controls for everything but the training data.

Algorithm rankings are uncommon in machine learning today. But they
are quite natural from a broader perspective on Al. Ultimately, we expect
an intelligent machine to learn and successfully navigate in all sorts of
environment. Computer science seeks to develop algorithms that perform
well in a wide range of situations.

Ranking agreement

A staple of the ImageNet era was the external validity of model rankings.
Model rankings routinely replicated across different datasets, as we saw in
Chapter 7. External validity of model rankings is a desirable property for
model selection. It suggests that whatever ranking we select form might
agree with whatever ranking actually matters in the end.

Rankings computed from direct evaluations generally don’t agree. Differ-
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ent benchmarks give different rankings under direct evaluation, even if the
benchmarks try to measure the same thing. In contrast, rankings do agree to
a surprising degree once we control for task adaptation (tune-before-test).
This suggests that prepared model evaluation might have similar benefits as
training from scratch when it comes to ranking stability.

To start with an example, consider the two question-answering benchmarks
NQ-Open and ARC-Challenge. A typcial question from NQ-Open looks like
this:

Where is the world’s largest ice sheet located today?

ARC-Challenge might instead ask:

Which land form is the result of the constructive force of a
glacier?

The two benchmarks both ask natural questions about general Wikipedia-
type knowledge and, yet, the rankings don’t agree at all under direct evalua-
tion. NQ-Open has free-form answers, whereas ARC-Challenge is multiple
choice.

Let’s look at the situation more broadly across several benchmarks. To
do so, we need a measure of agreement between rankings. The Kendall
rank correlation coefficient, commonly Kendall’s 7, is a measure of ordinal
association between two sets of observations ay,...,a, and by,...,b,,. Think
of a; as the score of model i in benchmark A and b; as the score of model i
in benchmark B. Call a pair (i,]) concordant if a; > a; and b; > b;. The
benchmarks agree about which model is better. Call a the pair discordant if
they disagree. In the absence of ties, Kendall’s T equals

T_C—D
()
where C is the number of concordant pairs and D is the number of discordant

pairs. Two perfectly aligned rankings have 7 = 1, reverse rankings have 7 =
—1. For random rankings, we expect 7 = 0.

Given this definition, we can look at the typical ranking agreement between
benchmarks.

Rankings from direct evaluations on different benchmarks generally don’t
agree. This is the case even if the different benchmarks aim to measure the
same thing. Recall that direct model comparison are always confounded by
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Figure 11.4: Example of ranking disagreement under direct evaluation (left) and
ranking agreement after finetuning (right) for two representative benchmarks.
Rankings are maximally aligned within confidence intervals.
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Figure 11.5: Average ranking agreement between a benchmark and all other bench-
marks measured by Kendall’s tau.

training on the test task. We can never be sure if an advantage is due to the
fact that one model saw more task relevant data.

Applying tune-before-test, rankings enjoy greater agreement across dif-
ferent benchmarks. This is true even if the benchmarks aim to measure
different abilities. Representation comparisons under train-before-test there-
fore partially adjust for training on the test task. What'’s perhaps surprising
is that tune-before-test also aligns perplexity rankings with downstream
task benchmarks.

After tune-before-test, the agreement between perplexity on different
datasets and downstream benchmarks is generally the same as the agreement
between perplexity rankings on different datasets. Recall that we do have
scaling laws for perplexity (or cross entropy test loss). In contrast, under
direct evaluation benchmarks don’t seem to have reliable scaling laws. This
changes after tune-before-test. The agreement between perplexity rankings
and benchmarks implies some scaling laws for downstream benchmarks.

11.5 Notes

Alignment. On January 27,2022, OpenAl announced InstructGPT in a blog
post called Aligning language models to follow instructions. The correspond-
ing reserch paper on InstructGPT? builds on the earlier work Fine-Tuning
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Figure 11.6: Average ranking agreement between perplexity on different datasets
(Wiki, Stack, Arxiv) and 24 downstream task benchmarks

Language Models from Human Preferences by Ziegler et al.??, which in turn

builds on the 2017 paper Deep reinforcement learning from human prefer-
ences’3. Chip Huyen wrote a helpful expository blog post on RLHF.?* Yoav
Goldberg blogged about why SFT alone is not enough. > The exposition of
RLHF and DPO in this chapter closely follows the original DPO paper by
Rafailov et al.”® There’s a rapidly growing and evolving set of alignment
methods in the research community. Anthropic followed a somewhat differ-
ent approach for the Claude models, called Constitutional Al, that works
using self-supervision against a reference specification. These differences
in alignment techniques have effects on the performance of the model, but
don’t alleviate the difficulty with evaluation that this chapter is about.

LLM evaluation. There’s a vast and rapidly growing literature on the issues
with LLM evaluation and various proposals to address these issues.

More than thirty years ago, British computing pioneer Karen Sparck
Jones?” wrote extensively about rigorous evaluation methodologies in NLP, >%?°
framing evaluation as a measurement problem and centering reliability and
validity. An advocate for rigorous evaluation, she also recognized the danger
of benchmarking and evaluation to become a “new orthodoxy”:

Designing and applying evaluation methodologies has been a
salutary experience [...]. However evaluation has to some ex-
tent become a new orthodoxy, and it is important it should not
turn into an ultimately damaging tuning to demonstrate prowess
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in some particular case, as opposed to improving the scientific
quality of work in the field and promoting community synergy. >’

Some of this appears in a monographs co-authored with Galliers in 1993
and 1995.7%%”

More recently, many have pointed out the problems with thinking of LLM
benchmarks as valid measurements of meaningful latent constructs. ®282%31-34
These concerns about validity have also prompted recent proposals to
strengthen measurement practices in LLM evaluation.’>=” The debates
about construct validity of benchmarks echo a vast literature on validity in
educational and psychological testing.>® The notion of construct validity in
testing goes back to the 1950s work by Cronbach and Meehl. >’

Bommasani et al. distinguish between intrinsic and extrinsic evaluation.*’

Extrinsic evaluation refers to performance in downstream tasks. Intrinsic
evaluation aims to measure properties of the model, such as capabilities,
skills, and biases, under direct evaluation. The authors, in particular, argue
that it’s important to equalize and account for “adaptation resources” under
extrinsic evaluation. Pointing to valdity challenges with intrinsic evaluation,
they remark:

There is a significant open question of how intrinsic evaluation
should be implemented; the mechanics of such evaluation are
unclear.

Evaluation artifacts and shortcuts. Direct evaluation is highly sensitive
to minor variations of the prompt. Different prompting templates give rise
to different evaluation results.*' Item ordering affects evaluation results,
too.*? In fact, even just changing the single character delimiter in the prompt
can change MMLU accuracy by 23% and put any model in the top ranking
position.43 Some of these observations, however, may be different for more
recent reasoning models.

Multiple choice benchmarks are susceptible to shortcuts. LLMs can often
successfully answer multiple-choice questions without even seeing the ques-
tion.** McCoy, Pavlick, and Linzen discuss shortcuts to natural language
inference benchmarks.*> Others caution that surveys and tests designed for
humans can be invalid when applied to LLMs. %47

Training on the test task. Dominguez-Olmedo, Dorner, and Hardt in-
troduced the term training on the test task and contributed the argument
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including regression plots about MMLU and GSM8k that this chapter dis-
plays.!®> The findings about tune-before-test and ranking stability are from
Zhang, Dominguez-Olmedo, and Hardt.**

Examples of training on the test task include the use of instruction-tuning
data or question answering templates during pre-training. **~>? Models may
also implicitly train on the test task when their pretraining data is selected
through ablations on downstream benchmark evaluations>>°*. There is a
gap between next token prediction at training time and tasks such as reason-
ing and question answering at test time. Ongoing research and engineering
efforts try to narrow this gap.>*°°

Roberts et al.”® and Li and Flanigan®’ find that models often perform
better on datasets that were already publicly available at the time of model
training. The effectiveness of fine-tuning on the training set accompany-
ing LLM benchmarks is well-known. %% Consequently, many influential
instruction-tuning datasets contain or are partly derived from benchmark
train data.”®®!%? Li and Flanigan®’ identify small amounts of benchmark-
specific data in the publicly available Alpaca®’ and Vicuna®* instruction-
tuning sets. Zhou et al. empirically analyze the effects of fine-tuning on
benchmark-specific data and warn about its impacts on benchmark valid-

ity. ©

Data leakage and contamination. Data leakage®® and data contamina-
tion %%’ are related problems. Data contamination or test set contamination
refers to any overlap between the training data of a model and the test set
of a benchmark. The sheer size and limited curation of today’s pretraining
corpora exacerbate data contamination concerns in language model evalua-
tions. ®~°? Technical reports accompanying model releases often mention
data contamination.’”’~’? Detecting and preventing data contamination, how-
ever, remains an open problem.’#”> Leech et al. discuss several forms of
data contamination.”®

Emergent abilities. Emergent abilities or emergent capabilities '*”” refer

to an increase in model performance at large scales that isn’t predictable
from smaller scales. Wei et al. report emergent capabilities for various
benchmarks including MMLU and GSM8K. '* However, researchers found
that the log-probability of the correct answer often improves smoothly, even
when other metrics seem to show emergence.’®”” Lu et al.®" argue that the
appearance of emergent capabilities can be explained by in-context-learning.
Schaeffer, Miranda, and Koyejo argue that emergent capabilities may be an
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artifact of non-linear and discontinuous evaluation metrics like accuracy. ®!
However, there are still signs of emergence on MMLU even when using
continuous metrics like the Brier score. !
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