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Forces against crisis

If machine learning thwarted scientific crisis, the question is
why. Some powerful explanations emerge. Key are the social
norms and practices of the community rather than statistical
methodology.
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Our closer empirical look at the scientific crisis in the applied statistical
science made one thing clear. By all accounts, the statistical sciences have
been engulfed in a major replication crisis. Machine learning shares the
Achilles heel of statistical measurement with other data-driven disciplines.
The research ecosystem in machine learning is far from perfect. But some
central empirical phenomena are different and unique to machine learning.

If the core scientific mandate of machine learning is to identify better and
better models, benchmarks seem to be doing a reasonable job at keeping
track of progress. At least, they did in the ImageNet era. Replication studies
in machine learning reveal that model rankings have internal validity and
that they are often stable across different domains. This is a better outcome
than we had reason to hope for given the formal guarantees of the holdout
method.

The empirical reality begs an explanation. How could it be that a decade
of competitive use of the ImageNet test set didn’t go south? The excessive
use of ImageNet in the deep learning era of the 2010s certainly looks like
what Duda and Hart called training on the testing set: “a long series of
refinements guided by the results of repeated testing”. This concern is more
than a hypothetical. We saw simple and practical demonstrations, supported
by theoretical arguments, showing that it is entirely possible to overfit to
test sets through repeated use. A few thousand evaluations are enough, in
principle, to break the holdout method. The community has easily made
hundreds of thousands of evaluations on popular test sets.

So, why didn’t the benchmarking enterprise run off a cliff, leading to
overspecialized results of little scientific value?

We now examine a few emerging explanations. These explanatory pieces
all have something in common. They aren’t so much about statistical method,
but rather about how scientists operate individually and as a community.
Several psychological and social patterns in the community turn out to be
unexpected forces against the scientific crisis.

Throughout this chapter, the focus is on the internal validity of the iron
rule. Why does competitive empirical testing on benchmarks clear the bar
of replication on fresh data? Theoretically we can answer this question
by proving stronger guarantees for the holdout method under different
assumptions that capture how the community operates. We’ll see a few such
assumptions and theorems that follow from them.

Internal validity rules out that you can game a benchmark by climbing
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the leaderboard with spurious actions, such as ensembling random models
as we discussed in Chapter 5. It’s the first necessary step towards external
validity. External validity of benchmark results is even less understood than
internal validity. But at least there is an intuitive link between internal and
external validity in benchmarking. If there is no spurious way to climb the
leaderboard, your best strategy is to make honest progress. Real progress, in
turn, should hold up in other domains as well.

Fully understanding the empirical phenomena is an ongoing research
quest, full of intriguing open problems. This chapter provides a starting
point.

8.1 The force of competition

A key characteristic of the machine learning community is its focus on
achieving state-of-the-art results. State-of-the-art is whatever is at the top
of the leaderboard and that’s where the community’s attention naturally
gravitates toward. The basic research mechanic is beating the previous best.
And, to oversimplify, that’s primarily what the community cares about.

Competition over the top spots on the leaderboard is a unique aspect of
the benchmarking research ecosystem. In other scientific applications of
statistics, we may be interested in estimating numerical quantities, such as
the treatment effect of a new intervention. In machine learning, researchers
compete over the best model for a given task.

Competition over the top spot in a benchmark might seem narrow and in
a sense anti-scientific. Shouldn’t science explore more freely?

But if the scientific crisis had something to do with researchers degrees of
freedom, we can also see the benefits of competitive testing. Competition
over the top spot in a benchmark radically reduces researchers degrees of
freedom. The dataset is fixed, the metric is fixed, and the evaluation protocol
is fixed. In traditional benchmarks, like ImageNet, also the choice of training
data is set in stone and agreed on. The only freedom is in the choice of the
training algorithm and model architecture.

For a benchmark to work, it must be able to correctly identify the best
model at any point in time under competitive pressure. Correctly identifying
the best is also sufficient to get a full ranking. After all, the k-th best model
is the best model after discarding the top k −1 models. So, we can rank by
repeatedly identifying the best.
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As it turns out, identifying the best model from a sequence of adaptively
chosen models is easier than accurately estimating the loss of each model.
While estimating the loss of each model is sufficient for identifying the best,
it is not necessary. To put it succinctly:

If all we care about is beating the previous best, there is no way to overuse a
test set.

This is a theoretical result we prove next.

Leaderboard error

To make the point precise, we need a definition of what it means for a holdout
mechanism to correctly identify the best model at any point in time. Given
a sequence of models, we require that the holdout mechanism correctly
estimates the smallest risk seen so far. This is different from trying to give
an accurate answer to all requests. The mechanism might err—or decline to
answer—on models that are nowhere near the best.

This relaxed requirement motivates the notion of leaderboard error. Leader-
board error is small if the holdout method keeps track of the risk of the
best performing model over time, rather than the risk of all models ever
evaluated.

Definition 1. The leaderboard error of a holdout mechanism producing a
sequence of estimates R1, . . . ,Rk given a sequence of adaptively chosen mod-
els f1, . . . , fk is defined as:

lberr(R1, . . . ,Rk) = max
step t∈{1,...,k}

∣∣∣∣∣Rt − min
model i∈{1,...,t}

R(fi)
∣∣∣∣∣ .

Leaderboard error is small if at any point in time t, the estimate Rt is a
good estimate of the smallest risk seen up until point t, i.e., min1≤i≤tR(fi).

Operationally, if the leaderboard error is bounded by ε > 0 and the holdout
mechanism returns a value Rt such that Rt < Rt−1 − ε we know that model ft
improved over all prior models ft−1, . . . , f1. Note that the leaderboard error,
like empirical risk, is a sample quantity, i.e., a function of the sample that
the holdout mechanism works with.

There is a simple and natural holdout method that achieves small leader-
board error:

Given a new model, check if it beats the previous best by a significant amount
on the test set. If so, update the previous best, otherwise do nothing.
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We call this the Ladder mechanism. More precisely, for each given model the
Ladder compares the empirical risk estimate of the model to the smallest em-
pirical risk achieved by any model encountered previously. If the empirical
risk is below the previous best by some margin, it announces the empirical
risk of the current model and stores it as the best seen so far. However, if the
empirical risk is not smaller by a margin, the Ladder simply continues to
report the previous best. This reveals no new information other than that
the model didn’t improve.

We focus on risk with respect to the zero-one loss. However, the ideas
apply more generally to any bounded loss function.

Ladder:
Given dataset S, threshold η > 0

• Assign initial top score R0 = 1.
• For each round t = 1,2 . . . :

1. Receive model ft : X →Y
2. Compute the empirical risk RS(ft).

a. If RS(ft) < Rt−1 − η, update top score to Rt = RS(ft).
b. Else keep previous top score Rt = Rt−1.

3. Output current top score Rt

The next theorem shows that the Ladder algorithm indeed achieves small
leaderboard error. The main feature of the error bound is a logarithmic
dependence on the number k of models that we evaluate. This is the kind
of dependence we get out of the Hoeffding bound in the non-adaptive case.
However, here we get the logarithmic dependence even in the adaptive case,
if we only care about identifying the best model.

Theorem 1. For a suitably chosen threshold parameter, for any sequence of
adaptively chosen models f1, . . . , fk , the Ladder algorithm achieves with probabil-
ity 1− o(1):

lberr(R1, . . . ,Rk) ≤O
(

log1/3(kn)
n1/3

)
.

The proof of the theorem follows from a variant of the adaptive tree
argument introduced in Chapter 5. The new element here is that we carefully
prune the tree so as to bound its size.

Proof. Set the threshold parameter to η = log1/3(kn)/n1/3. This technical
choice will become clear later. For this threshold η, we need to show that
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with probability 1− o(1) we have for every round t ∈ [k] the error bound

|RS(ft)−R(ft)| ≤O(η) =O(log1/3(kn)/n1/3) .

Let A be the adaptive analyst generating the function sequence. The
algorithm A naturally defines a rooted tree T of depth k recursively defined
as follows:

1. The root is labeled by f1 =A(∅).
2. Each node at depth 1 < i ≤ k corresponds to one realization (h1, r1, . . . ,hi−1, ri−1)

of the tuple of random variables (f1,R1, . . . , fi−1,Ri−1) and is labeled
by hi = A(h1, r1, . . . ,hi−1, ri−1). Its children are defined by each possi-
ble value of the output Ri of Ladder Mechanism on the sequence
h1, r1, . . . , ri−1,hi .

We are going to bound the size of the tree using properties of the Ladder
algorithm. Let B = (1/η + 1)log(4k(n+ 1)). We claim that the size of the tree
satisfies |T | ≤ 2B. To prove the claim, we will uniquely encode each node in
the tree using B bits of information. The claim then follows directly.

This is called a compression argument and it goes as follows.

1. We use dlogke ≤ log(2k) bits to specify the depth of the node in the
tree.

2. We then specify the index of each i ∈ [k] for which the Ladder algorithm
performs an “update” so that Ri ≤ Ri−1 − η together with the value Ri .

The key observation is that since Ri ∈ [0,1] there can be at most d1/ηe ≤
(1/η) + 1 many such steps. This is because the loss is lower bounded by 0 and
decreases by η each time there is an update.

Moreover, there are at most n+ 1 many possible values for Ri , since we’re
talking about the zero-one loss on a dataset of size n. Hence, specifying all
such indices requires at most (1/η + 1)(log(n+ 1) + log(2k)) bits. These bits of
information uniquely identify each node in the graph, since for every index i
not explicitly listed we know that Ri = Ri−1. The total number of bits we
used is:

(1/η + 1)(log(n+ 1) + log(2k)) + log(2k) ≤ (1/η + 1)log(4k(n+ 1)) = B.

This establishes the claim we made. The theorem now follows by applying a
union bound over all nodes in T and using Hoeffding’s inequality for each
fixed node. Let F be the set of all functions appearing in T . By a union
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Figure 8.1: Low bit encoding of the adaptive tree. Dashed lines correspond
to rounds with no update.

bound, we have

P {∃f ∈ F : |R(f )−RS(f )| > ε} ≤ 2|F |exp(−2ε2n)

≤ 2exp(−2ε2n+B) .

Verify that by putting ε = 5η, this expression can be upper bounded by 2exp(−n1/3) =
o(1), and thus the claim follows.

The logarithmic dependence on the number of evaluations is great, but
the term n−1/3 that depends on the sample size doesn’t meet the more famil-
iar n−1/2 rate. The exponent 1/3 in the error just doesn’t seem quite right.
A bit of work, however, can show that the analysis is tight for the Ladder
algorithm. You can find a sequence of functions that forces an error matching
the upper bound. But there could still be another algorithm that gets a better
exponent.

We know from Chapter 2 that we’re not going to beat the exponent 1/2. But
between 1/3 and 1/2 we don’t know what’s possible. Although not obvious,
a more sophisticated randomized version of the Ladder algorithm achieves
the exponent 2/5. But that’s the best researchers know to date. The following
table summarizes the state of affairs.
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Analyst General estimation error Leaderboard error

non-adaptive O(
√

logk/n) O(
√

logk/n)
adaptive O(

√
k/n) O((logk/n)2/5)

SOTA psychology

The Ladder algorithm shows how to guarantee benchmark integrity under an
excessive number of model evaluations. Rather than guaranteeing accurate
evaluations for all possible queries, the algorithm focuses on identifying the
best. The mechanism couldn’t be any simpler: Check to see if you beat the
previous best by some margin. If you did, publish the result. Otherwise, try again.

The principle is so simple, in fact, that researchers could easily apply
it in their minds. And perhaps they knowingly or unknowingly do—as
sort of a mental heuristic. Heuristics always discard some information and
avoid excessive computation in favor of simple ways of going about things.
Humans excel at finding good heuristics to navigate complex systems.

So, let’s postulate about the community. Imagine we’re in a world where re-
searchers primarily care if their model improved over state-of-the-art (SOTA).
Call this community mindset “SOTA psychology”. It’s fundamentally the
same principle that lies behind the iron rule. All scientific questions must
ultimately be settled by competitive empirical testing. The best model wins
and we care about little else.

In this view of the research community, benchmarks have the primary
purpose to identify the best model. Rather than providing a numerical
estimate of model accuracy for each model we evaluate on the test set, the
goal is to identify the best model at any point in time. Even if syntactically
researchers apply the standard holdout method, they primarily use the
information from the test set to identify when they improved. If they didn’t
improve, they don’t read much into it other than I didn’t improve. This mental
pattern is enough to implement the Ladder algorithm. The community
reinforces this pattern by rewarding state-of-the-art results with conference
publications, awards, and an increase in attention not afforded to results
that didn’t beat the previous best.

Consequently, there are two ways to think of the Ladder algorithm. One is
prescriptive. It’s an alternative holdout method you can actively and explicitly
implement to avoid test set overuse in a benchmark or a competition. This is
the typical way we think about algorithm design. In this view, algorithms
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are interventions that change the way a running system works.

The other way to think about the Ladder algorithm and its analysis is as a
descriptive model of the community. We can think of the Ladder algorithm as
a kind of natural algorithm that the community implements on its own. From
this perspective, the algorithm describes some aspect of how the community
works. The guarantees of the algorithm then help to explain some empirical
phenomena we observe.

8.2 Biases and heuristics

The Ladder algorithm is a heuristic resulting from an excessive focus on
top results. It might seem narrow-minded as a scientific credo to only care
about the best, but it has the benefit of protecting the test set from overuse.
Ignorance is bliss, even if counterintuitive in the context of scientific work.

Heuristics are key to human decision making. Decades of research have
compared human decision making to the old economic ideal of a rational deci-
sion maker. Rational agents compute optimal—that is, utility maximizing—
solutions to decision problems using all available information. Rational
agents all strategize alike. Optimality makes them interchangeable so that in
theory we’re left with one representative agent. The rational agent model—
homo economicus—is the formal basis for large swaths of economic theory.

Humans almost never meet the economic ideal of rationality. You may be
shocked to find out they are not all alike. They don’t optimize perfectly. And
they don’t exhaustively use all available information when choosing what to
have for dinner. This clash of common sense with economic theory is what
motivated economist and AI pioneer Herb Simon to develop the theory of
bounded rationality. Simon’s work in turn influenced the biases and heuristics
research program of Kahneman and Tversky. Core to this line of research is
the idea of cognitive biases. Cognitive biases are systematic deviations from
rationality commonly found in human decision making.

The last chapter touched on how cognitive biases can fuel the scientific
crisis. Researchers, for example, are vulnerable to confirmation bias. Scien-
tists tend to confirm what they think is true in the first place. They select
evidence that supports their beliefs, while discarding information that is in
conflict with their prior assumptions. Fischhoff’s hindsight bias is another
such culprit.1 Once an uncertain event is resolved one way or the other, we
mistakenly believe—with hindsight—that we predicted this outcome all
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along. This cognitive pattern makes us dismiss valuable experimental data
as obvious or unsurprising.

But cognitive shortcuts of the analyst can also mitigate test set overuse.
A researcher is unlikely to behave like the worst-case analyst that gave us
the pessimistic bounds in Chapter 5. In this worst case example, the analyst
had to act on minor differences, such as distinguishing between a model
achieving error 0.501 and one achieving error 0.499. This defies common
sense. Moreover, the analyst had to look back at all the things ever tried and
precisely put them together in some specific way. This again seems to run
counter to intuitive human reasoning.

Try it out. Ask your office mates to multiply out 1× 2× 3× 4× 5× 6× 7× 8
in under 5 seconds. Because they’ll likely run out of time, they’ll make some
approximation. Now ask another group of friends to multiply out the same
sequence but in reverse order 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1. They will again
make some approximation. It turns out that humans tend to come up with
an underestimate if they go about multiplying the numbers in natural order
and an overestimate if they go in reverse. Kahneman and Tversky discovered
this bias some fifty years ago and called it anchoring effect.2 Humans rely
heavily on initial pieces of information (anchors) when solving problems.
This is the kind of observation that launched the study of cognitive biases.

A related observation is even older.3 Humans tend to have a recency bias
that assigns greater weight and significance to more recent events com-
pared to earlier ones. A similar but broader cognitive tendency is known as
the availability heuristic.4 Humans instinctively prioritize and give undue
weight to evidence that’s easier to recall or retrieve, whether due to recency,
convenience, prominence, or frequency of exposure.

Anchoring, recency, and availability all have something in common. When
applied to a scientist reusing a test set, they limit the amount of information
that can pass from the test set to the analyst. This in turn mitigates overfit-
ting. It’s as if the analyst made fewer evaluations. Just like the obsession with
chasing state-of-the-art protects the test set, so do many cognitive biases.

We can make the intuition mathematically rigorous by modeling the
analyst as a dynamical system.5 The analyst has some internal mental
state ht+1 = Ψ (ht, at) evolving according to state transition map Ψ . The state
transition map depends on the internal state ht and the holdout answer at
that the analyst observes in response to the query qt = qt(ht) chosen based on
the internal state. By making different assumptions on the state transition
map, we can model different cognitive limitations. Consider, for example, a
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contractive map satisfying

‖Ψ (h,a)−Ψ (h′, a)‖ ≤ λ‖h− h′‖

for some scalar λ ∈ (0,1). This corresponds to an analyst that discounts past
information in each step, resulting in recency bias. We can dial λ between 0
and 1 to quantify the strength of the bias. What’s neat is that this interpolates
between the two extremes of a non-adaptive analyst and a fully adaptive
analyst, giving us a continuum of generalization bounds from optimistic to
pessimistic.

Gigerenzer and Brighton argue that heuristics that rely on less informa-
tion and computation can often lead to better results—a less is more phe-
nomenon.6 We can see an instance of this general pattern in holdout reuse. A
simple mental heuristic like the Ladder principle that discards information
ultimately leads to better estimates. Likewise, different cognitive shortcuts
effectively reduce test set leakage.

8.3 Rip van Winkle’s replication problem

Limiting information is a powerful tool in arguing about test set reuse.
Formally, the proof of the Ladder theorem is based on a compression argument:
If we can show that at most B bits of information were revealed about the
test set, then the generalization gap can be at most O(

√
B/n). The reason is

that B bits of information can index at most k = 2B different functions. We
can therefore apply Hoeffding’s inequality with a union bound over k = 2B

functions and make use of its
√

logk =
√
B dependence in the error. You have

all the tools you need to formalize and prove this statement as an exercise.

Compression is a useful tool, since it works for arbitrary algorithms and
also applies to the adaptive case. Any deterministic adaptive analyst using B
bits of information from the test set can implicitly only search over 2B

functions, even if the analyst uses the test set adaptively. It makes no
difference for the argument.

The compression argument has another application to benchmark longevity
that starts from a lovely thought experiment proposed by researchers Arora
and Zhang. Call it Rip van Winkle’s replication problem.

Rip Van Winkle is an American folk tale about a Dutch-American villager
who drinks a mysterious liquor in the New York state mountains, falls asleep
for 20 years, and wakes to find he has slept through the American Revolution.
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Imagine a modern day Rip who fell asleep in 2012, days after the release of
ILSVRC-2012, and wakes up in 2022. Before Rip fell asleep, he trained linear
models on top of handcrafted feature transforms. On ILSVRC-2012, these
models would include the correct label among their top five predictions
about 75% of the time, showing modest success in a metric called top-5
accuracy. Building highly accurate models for ImageNet looked like the holy
grail of computer vision. When Rip woke up, however, end-to-end trained
deep neural networks would get the correct label right with one guess about
90% of the time. People had stopped looking at top-5 accuracy, because it
was too easy. To the extent that models made errors at all, it was largely due
to ambiguous instances.7 For academic purposes, researchers considered
ImageNet solved.

Shocked by the developments, Rip rushes to get caught up. Now, how
many bits of information about the ILSVRC-2012 test set do you have to tell
Rip so that he can reproduce, say, ResNet-152?

Rip has everything you could’ve asked for in 2012, but not more than that.
You need to describe whatever is new, the model architecture, the hyper-
parameters, and so forth. Since these design choices directly or indirectly
depend on test set information, they potentially reveal information about
the test set.

Arora and Zhang estimate that 1032 bits are enough to replicate ResNet-
152 from the state of knowledge in 2012. With an optimized compression
bound, this gives an upper bound on the generalization gap of at most 5%.
Not bad!

There is a subtlety though. It would likely be quite hard to actually train
ResNet-152 in the 2012 software ecosystem. Modern deep learning libraries
and GPU optimizations were still missing. On the other hand, if we allow
Rip to use the 2022 software ecosystem, we’re cheating a little bit. After all,
the software ecosystem co-evolved in tandem with progress on ImageNet.
Various software developments happened with ImageNet in mind. It’s not
clear how much information from the test set leaked into the software
ecosystem.

8.4 The force of the Blenheim Spaniel

How much can we overfit to the ImageNet test set if we really try? Let’s put
on our adversarial hat and try to come up with an attack on the ILSVRC
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test set. Ignoring all better judgment, our only goal is to find a sequence of
adaptive queries to the test set that drives up the generalization gap as much
as possible. In Chapter 5, we saw such an attack for binary classification
problems that works by ensembling random models. This attack is quite
effective, forcing a large generalization gap with a few thousand queries on
relatively large test sets. Can we do the same on ImageNet?

The attack from Chapter 5 was for binary classification problems and
doesn’t directly apply to ImageNet, since ILSVRC-2012 has 1000 classes. But
it’s not hard to generalize the idea. First, we pick k random classifiers as we
did before. We evaluate each on the test set. Select the classifiers that have
better than random chance accuracy on the test set. For C = 1000 classes,
accuracy of random guessing equals 1/C. So, we select the random classifiers
that exceed accuracy 1/C.We then ensemble the selected classifiers. To do so,
replace the majority vote with a plurality vote that picks the most frequently
predicted label on each data point.

Code it up and try it out. You’ll be surprised to find out how poorly it
performs. The attack barely gets off the ground. Although the algorithmic
idea of ensembling random functions generalizes from two classes to any
number of classes, it somehow just doesn’t work well at all. This is for a
fundamental reason. Ensembling random functions in the binary case forced
a generalization gap around

√
k/n where k is the number of functions and n

is the sample size. But in the case of C classes, the analogous attack only
achieves generalization gap about C−1

√
k/n. It’s worse by a factor C. So,

for 1000 classes, we’d need one million times as many queries to achieve the
same error as in the binary case.

There is a more clever attack that forces a generalization gap
√
k/Cn. But

that is where it ends. No attack in the multi-class setting can do asymptot-
ically better than this (up to perhaps a logarithmic factor). Having many
classes therefore mitigates the risk of overfitting due to test set reuse. The
larger the number of classes, the harder it is to overfit to a test set. It’s as
though the sample size increases from n to Cn. For ImageNet ILSVRC-2012
that’s a factor 1000 improvement in effective sample size. It’s like having a
test set of size 50,000,000.

There is only one catch. These bounds are for an analyst that knows
nothing about the test set and just starts querying the holdout from scratch.
This is the same setup as the method we saw in Chapter 5 that overfits by
ensembling random functions. What the above bounds show is that any such
method no longer works well on a task with many classes.
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In practice, however, researchers always have some prior information about
the test set. In particular, we might already know a model that performs
reasonably well on the test set. This gives us some good guess to start
from about what the labels in the test set are. So, to make our attack more
powerful, we give it access to a good model to begin with. What this means
is that our attack doesn’t have to start from scratch. It can utilize good
predictions.

But how exactly can we use a well-performing model to overfit with fewer
queries? There are at least three increasingly effective strategies:

1. The attacker uses the model’s logits as the prior information about
what the unknown labels are in the test set. This gives only a minor
improvement over a prior-free attack.

2. The attacker uses the model’s logits to restrict the attack to a subset
of the test set corresponding to the lowest “confidence” points. This
strategy gives modest improvements over a prior-free attack.

3. The attacker can exploit the fact that the model has good top-R accu-
racy, meaning that, for every image, the R highest weighted categories
are likely to contain the correct class label. The attacker then focuses
only on selecting from the top R predicted classes for each point. For
R = 2, this effectively reduces class count to the binary case.

While the first two show only minor improvements over the baseline, the
third idea has legs. Based on this idea, researchers came up with a clever
attack on the ImageNet ILSVRC test set that forces a 3% generalization error
with 5000 queries.8 This is not too far from the Rip van Winkle estimate.

You might wonder if we can prevent overfitting by spuriously copying two
classes into many classes. Unfortunately, this alone doesn’t help since a good
model for the problem would have good top-2 accuracy, therefore reducing
the problem to the binary case. For multiple classes to help, the classes have
to be reasonably hard to distinguish.

What’s the moral of this story? ImageNet curiously contains some 120
different dog breeds, such as the Appenzeller, Blenheim Spaniel, Otterhound,
Bluetick Coonhound, Groenendael, and the Schipperke, to name a few. This
benchmark artifact might seem frivolous. After all, most humans struggle
to identify any of these. Unexpectedly, though, having many similar classes
makes it harder—not easier—to overfit to the test set.
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8.5 Code and collaboration

Researchers compete but they collaborate just as much. The impressive
software ecosystem growing around benchmarks makes it easy to share
resources for model development. You’d never start from scratch if you tried
out a new idea. You’ll always take the most similar piece of code you can
find and incrementally tweak it.

Collaboration and code sharing mean that researchers try out similar
things. We can see this empirically by looking at model similarity. Suppose
one model has 90% accuracy and another model has 75% accuracy. What’s
the chance that the two models agree on a randomly chosen point? If each
model erred on a random subset of points independently, we’d see the two
models agree on a randomly chosen point with probability

0.9× 0.75 + 0.1× 0.25 = 0.7 .

This is, in a sense, the baseline level of agreement that follows from the
accuracy numbers if errors are independent and random. Highly accurate
models must agree a lot. Two models are more similar than expected if the
agreement is significantly higher than this baseline value.

We can look at a set of ImageNet models and ask, what is the average
similarity between pairs of models from this set. ImageNet models turn
out to have higher than expected model similarity. This has interesting
theoretical consequences. Evaluating models with high similarity is like
evaluating fewer models. There can only be so many functions that agree a
lot. As a result, it’s possible to prove stronger generalization bounds for the
holdout method for model families of high similarity. This works for in the
non-adaptive as well as the adaptive case.

To summarize, dataset and code sharing lead to high model similarity,
which in turn mitigates test set overuse somewhat.

Donoho coins the term frictionless reproducibility to describe the advances
in the data and software ecosystem that power applied machine learning
research. Frictionless reproducibility has three components:

1. Dataset creation
2. Code ecosystem enabling easy re-execution
3. Challenges, including both data science competition and machine

learning benchmarks.

These aspects of machine learning research deserve attention. Whereas
model architectures and optimization methods often take the limelight,
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the software ecosystem around machine learning benchmarks is the quiet
infrastructure that we all use but often take for granted.

Frictionless reproducibility acts as a lubricant in the gears of a scientific
machine built after the iron rule. If we’re going to settle all disputes by
competitive empirical testing, it helps that we can carry out these empirical
tests efficiently. Lower friction allows for greater activity. The software
ecosystem around benchmarks has greatly increased productivity.

Take the data science platform Kaggle as an example. In its heyday, Kaggle
organized hundreds of popular data science competitions. What started as
a competition platform grew into a general data science community hub.
Kaggle checks all three boxes of frictionless reproducibility. The datasets are
easily available. The code is available and ready to run; Kaggle even provides
Docker images—virtual containers to run reproducible workflows. The
platform also offers a steady stream of challenges, with public leaderboards
that gamify the experience. Cash prizes incentivize participants. Kaggle
doesn’t just meet the criteria for frictionless reproducibility—it excels at all
three.

It’s clear that Kaggle and similar platforms promote productivity. But to
add a word of caution, there’s a difference between productivity and scientific
advances. Productivity doesn’t guarantee scientific value. In particular,
Kaggle competitions rarely produce novel techniques. Winning submissions
in competitions often tweak standard methods, such as gradient boosting,
problem-specific feature engineering, and ensembling. The primary model
building lessons from years of ML competitions is that gradient boosting is
the go to choice for most competitions.9,10

Code from competitions tends to be of little reusability value. Companies
sponsoring competitions rarely ended up using the winning submissions in
their own systems. Netflix notably discarded the code from its $1 million
Netflix Prize competition, one of the most widely publicized machine learn-
ing competitions, held years before Kaggle launched.11 Companies were
more interested in branding and recruiting than in the code itself. Kaggle
recognized this early on. Before its acquisition by Google in 2017, the startup
had pivoted from competition platform to community hub. What mattered
wasn’t the output of the competitions, but the people competing in them.

Lack of friction alone doesn’t create value. Conversely, scientists often
overcome significant friction in pursuit of scientific advances. Return to
ImageNet. Early work on ImageNet was relatively high friction. Predating
the software we use today, building the breakthrough AlexNet architecture
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required writing low-level GPU optimizations from scratch. Especially in
the early days, training and testing on ImageNet was slow. Reproducing
the results from other labs was tedious, if at all possible. Yet, progress
was steepest in those early days. ResNets, one of the greatest highlights of
era, came long before HuggingFace, PyTorch, or Weights and Biases. The
development of residual networks even predates the first public release of
TensorFlow. The first release of the ResNet code was written in Caffe, an
academic deep learning framework mostly senior researchers still remember.
The early ImageNet model development happened despite relatively high
friction. The same is true for the early large language model development
that we’ll get to in Chapter 10.

8.6 Conclusion

Several theoretical results speak to the strong internal validity of machine
learning benchmarks. The holdout method and its variants often do better
than the results from Chapters 4 and 5 suggest. Key to these results are
psychological and social factor in how individual scientists and the commu-
nity as a whole engage with benchmarks. Focusing on beating the previous
best promotes benchmark longevity. Mental heuristics and shortcuts may
prevent overfitting. Practices like code sharing give test sets higher mileage.
Seemingly mundane problem artifacts can curb the possibility of climbing
a leaderboard through spurious improvements. All of these results give
guarantees that limit the extent to which we can deliberately or inadver-
tently climb a leaderboard with actions that don’t correspond to progress on
the task. Benchmarks turn out to be more resilient than we had reason to
believe.

Successful benchmark design has two components.

First, we need to make sure that there is at least one interesting solution
to the problem. In some domains—like image classification—this is easy
to guarantee, because we can verify that humans solve the task with high
accuracy. In other domains, this is not as straightforward as it sounds. The
Fragile Families Challenge, for example, was a well-run machine learning
competition about predicting life outcomes. But the dataset seemed to
contain no signals that allowed for models better than baseline predictions.12

When benchmarks go wrong, it’s often because there isn’t a good solution.

This first part of benchmark design is a matter of domain knowledge.
We need to have substantive reasons to believe that there is an interesting
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solution to the benchmark problem. Benchmarks can also go wrong, if
there are multiple ways of being good at the task, of which only some are
interesting. In this case, we might end up with the uninteresting solution. If
you unleash the community on a benchmark, you will eventually find a risk
minimizer, but you can’t choose which one you’ll get. You need to set up the
problem so that you’re happy with any risk minimizer. For example, there
seems to be no easy way to do image classification on a sufficiently large
and diverse datasets. Whatever the dataset—be it ImageNet or ImageNot—
achieving high accuracy forces the model to do something impressive.

For the second component of benchmarking, we need to make sure that
climbing the leaderboard corresponds to progress toward low risk on the
task. If there are easy ways to climb the leaderboard without improving on
the task, it’s likely that one way or the other competitors will—knowingly
or unknowingly—exploit these channels. This is where the results of this
chapter come in. There are several factors that limit the scope of spurious
improvements.

Put together, if we curb spurious improvements and there is at least one
good solution, we have reason to hope that leaderboard climbing converges
to the good solution.

8.7 Notes

Blum and Hardt introduced the Ladder algorithm and the definition of
leaderboard error.13 Hardt14 gave improved bounds on the leaderboard
error using noise addition ideas from differential privacy. Zrnic and Hardt
made the connection between cognitive biases and overfitting.5 Arora and
Zhang contributed the Rip van Winkle thought experiment and calculated
the compression bounds for ImageNet.15 Compression bounds in the context
of adaptive data analysis were first used by Dwork et al.16 Mania et al.17

study the role of model similarity in mitigating test set overuse. Mania and
Sra offer a theoretical explanation of on the line phenomenon in terms of
model similarity and distributional closeness.18

Feldman, Frostig, Hardt8,19 studied the problem of adaptive test set reuse
in the multi-class setting, providing both theoretical bounds, as well as the
empirical results for ImageNet that I discussed. In particular, they showed
how an adaptive analyst can force an error of Ω(

√
k/nC2). This bound follows

from a boosting argument that is, roughly speaking, a more sophisticated
version of the ensembling argument in Chapter 5. Acharya and Suresh20
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achieved the nearly optimal bound Ω(
√
k/nC) using a sophisticated adaptive

strategy.

Donoho’s article data science at the singularity develops the argument for
frictionless reproducibility, emphasizing its role in the progress of empirical
machine learning.21 Chazelle coined the term natural algorithms to describe
algorithms that nature implements on its own.22,23

Simon developed bounded rationality in the 1950s.24–26 Kahneman and
Tversky developed and popularized the idea of behavioral biases.2,27,28

These ideas have been hugely influential, spawning research fields in several
disciplines. Gigerenzer argues against the tendency in behavioral economics
to overemphasize biases as flaws in human decision making, a problem he
calls bias bias, pointing out how human heuristics often successfully navigate
complex scenarios.29
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